
EE319K Fall 2019 Final Exam Solutions Page 1

Final Exam

Date: December 14, 2019

 Circle one: MT, NT, JV, RY,

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an undue
advantage:

Signature:

Instructions:
 Write your UT EID on all pages (at the top) and circle your instructor’s name at the bottom.
 Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space

(boxes) provided. Anything outside the boxes will be ignored in grading.
 You have 180 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly.
 Please read the entire exam before starting. See supplement pages for Device I/O registers.

EE319K Fall 2019 Final Exam Solutions Page 2

(5) Problem 1. Variables. Consider the following C program.
uint8_t A=5;
const uint8_t B=5;
static uint8_t C=5;
volatile uint8_t D=5;
void func(const int32_t E, int32_t F){
 int32_t G=5;
 int32_t static H=5;
}
For each question list all possible variable names. Specify names A B C D E F G and/or H. If there are no possible
answers, specific NONE

(1) Part a) Which variable is allocated in R1? (for this question give the one answer) ……………………………………

(1) Part b) Which variables may be allocated on the stack? (for this question give NONE, one,
or more answers) ……………………………………………………………………………………………..………

(1) Part c) Which variables are private to (have scope limited to) the function func?
(for this question give NONE, one, or more answers) ……………………………………………..………………………

(1) Part d) Which variables are initialized to 5 when the you download object code to the MSPM0,
before any software has started? (for this question give NONE, one, or more answers) ……………………………………

(1) Part e) Which variable is the best one to use to share information between the main program
and software running in an ISR? (for this question give the one answer) ………………………………………….

(15) Problem 2. Equations. Give the relationships in terms of these parameters: (VOL, output low voltage of MSPM0 in
volts), (V, voltage in volts), (R, resistance in ohms), (n, number of bits in the ADC, e.g., 12 bits), (b, baud rate of the UART
in bits/sec, e.g., 115200 bps), (max, the maximum possible ADC voltage in volts, e.g., 3.3V), (min, the minimum possible
ADC voltage in volts, e.g., 0V), (r, rate at which one moves the slide pot in oscillations per sec, e.g., 10 Hz), (R, the
SysTick LOAD value), (f, the MSPM0 bus frequency in Hz, e.g., 80,000,000 Hz).

(4) Part a) Give the relationship for the power
dissipated in a resistor.

(4) Part b) Give the relationship for the maximum
bandwidth possible on a UART.

(4) Part c) Give the relationship for the ADC
resolution.

(3) Part d) Give the relationship for SysTick
interrupt period.

F

G

EFGH

B

D

P =I*I*R

BW =8b/10

Resolution = (max-min)/2n

or = (max-min)/(2n-1)

Units of power =watts

Units of bandwidth =bps

Units of resolution =volts

Period = (R+1)/f

Units of period = sec

EE319K Fall 2019 Final Exam Solutions Page 3

Store:
 CMP R1,#255
 BHI skip
 LSLS R1,#1 // 2*I
 LDR R2,=Buffer // base
 STRH R0,[R2,R1] // store at base+2*I
skip:
 BX LR

Integer (binary) Out (volts)
0000 0.0V

0001 1V (6k to 4V, 2k to

ground)

0010 1V

0011 2V (3k to 4V, 3k to
ground)

0100 1V

0101 2V

0110 2V

0111 3V (2k to 4V, 6k to
ground)

1000 1V

1001 2V

1010 2V

1011 3V

1100 2V

1101 3V

1110 3V

1111 4.0 V

(5) Question 4. Write an assembly language subroutine that stores a value into an array. The array is a global called
Buffer. Each element of the array is a signed 16-bit integer. The size of the array is 256 elements. There are two
parameters to your subroutine. R0 contains the signed 16-bit integer, and R1 contains the index (0 to 255). If R1 is less than
or equal to 255, then store the one value into the array at that index. If R1 is greater than 255, do not store into the array.

(10) Problem 3. Circuit. Consider this interface circuit. Assume
PB3, PB2, PB1, PB0 are digital output representing a binary
integer from 0 to 15. Notice all the resistors are the same value. To
make the math easier, assume VOH of the microcontroller is 4V,
and assume VOL is 0V. Some of the values are filled in. Complete
the table showing the relationship between output voltage Out, and
the binary integer. Show your work

6k

6k

6k

6k

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

Microcontroller

Out

EE319K Fall 2019 Final Exam Solutions Page 4

(5) Problem 5. LED interface. The LED has an operating point of 1.2V, 1 mA. Assume VOL is 0.3V and VOH is 3.2V.
Interface the LED to PB0 using negative logic. Show the circuit and label all resistors, and capacitors needed. Show the
circuit and the math required to select any resistors needed. No software is required.

 +3.3

 R = (3.3V-1.2-0.3V)/1mA = 1.8V/1mA = 1.8k

 Diode

 PB0

(10) Problem 6. Draw the state transition graph for a Moore FSM used to control an LED. There are two inputs and one
output. Consider the two inputs as a binary integer, I, from 0 to 3. The input will determine the brightness of the LED. More
specifically, the duty cycle of the LED should be 100*I/3 in percent. The time constant of the human’s visual processing is
about 100 ms. The switch input and LED output are both in positive logic. Each state has a name, an output, a dwell time,
and multiple arrows to next states. Just show the graph, no software is required. You may use X to specify 0,1,2 or 3.

EE319K Fall 2019 Final Exam Solutions Page 5

(10) Question 7: You are asked to implement a FIFO queue using the following variables. These variable names and types
are fixed and cannot be changed. You cannot add additional global or static variables. You can add local variables.
int16_t *GetPt; // pointer to oldest (next to Get)
int16_t *PutPt; // pointer to free space (next place to Put)
int16_t Buffer[10]; // FIFO can store up to 9 elements in this Buffer
void Fifo_Init(void){
 GetPt = PutPt = Buffer;
}

// Gets an element from the FIFO
// Input: Pointer to a place that will get
// Output: 1 for success and 0 for failure
// failure is when the FIFO is empty
uint32_t Fifo_Get(int16_t *pt){
 if(GetPt == PutPt) {
 return 0;
 }
 *pt = *GetPt;
 GetPt++;
 if (GetPt == &Buffer[10]){
 GetPt = Buffer;
 }
 return 1;
}

// Adds an element to the FIFO
// Input: value to be inserted
// Output: 1 for success and 0 for failure
// failure is when the FIFO is full
uint32_t Fifo_Put(int16_t data){
 int16_t *tpt = PutPt;
 tpt++;
 if (tpt == &Buffer[10]){
 tpt = Buffer;
 }
 if(tpt == GetPt){
 return 0;
 }
 *(PutPt) = data;
 PutPt = tpt;
 return 1;

EE319K Fall 2019 Final Exam Solutions Page 6

(5) Problem 8. Assume the UART0 has been initialized for busy-wait synchronization. Design an assembly function to implement
OutChar with these two steps
 1) Wait for UART TxFifo to have room, bit 7 of UART0_STAT
 2) Write data to the UART0_TXDATA to send data
The C prototype for the function is void OutChar(char data);

OutChar:
 LDR R1,= UART0_STAT
Loop:
 LDR R2,[R1] // read stat
 ANDS R2,#0x20 // check TXFF, not full means there is room to send
 BNE Loop // wait until TXFF is 0
 LDR R1,= UART0_TXDATA
 STR R0,[R1] ; send data
 BX LR
}

(5) Question 9. Translate the following C code to assembly

void (*Task)(void);

void SysTick_Init(void(*t)(void)){
 Task = t;
 SysTick->LOAD = 79999
 SysTick->CTRL = 7;
 __enable_irq(); // I=0
}

void SysTick_Handler(void){
 (*Task)();
}

 .data
 .align 2
Task: .space 4 // pointer to function
 .text
 .align 2
SysTick_Init:
 LDR R1,=Task
 STR R0,[R1] ; save function into Task
 LDR R0,=SysTick_LOAD
 LDR R1,=79999
 STR R1,[R0]
 LDR R0,=SysTick_CTRL
 MOV R1,#7
 STR R1,[R0]
 CPSIE I // enable interrupts (I=0)
 BX LR

SysTick_Handler:
 LDR R1,=Task
 LDR R0,[R1] // get function from Task
 BLX R0 // call function
 BX LR

EE319K Fall 2019 Final Exam Solutions Page 7

(10) Question 10. The subroutine mySub has one call by value parameter. There are no return parameters. The one call by
value input parameter is AAPCS compliant. A typical calling sequence is
 .text
 .align 2
stuff: .long 123 //32-bit constant
start: LDR R0,=stuff
 LDR R0,[R0]
 BL mySub

The subroutine allocates two 32-bit local variables, i and j and uses SP stack pointer addressing to access the local
variables. The binding for these two are

.equ i, //binding for 32-bit local variable

.equ j, //binding for 32-bit local variable

mySub:

 //allocate i,j

 PUSH {LR}
//---------start of body-------------------

 //set i = input parameter

 LDR R3,[SP,#i] //Reg R4 is the input parameter value
 STR R3,[SP,#j] //save parameter into local j
//---------end of body---------------------
 POP {R3}

 //deallocate i,j

 BX R3
In the boxes provided, show the binding for the two local variables, the assembly code to allocate the two local variables, the
assembly code to set i equal to the input parameter, and the assembly code to deallocate the two local variables.

(5) Question 11: You are attempting to capture a sinusoidal sound with a frequency of 1 kHz. The ADC is initializes to take
one 12-bit sample. Using the 12-bit ADC and periodic interrupt, you have programmed the SysTick to interrupt at a frequency
of 12 kHz. During the SysTick ISR you collect one ADC sample. Is it possible to recreate the original signal from the captured
samples? If your answer is yes, explain how. If your answer is no, what is the term used to refer to this loss of information?

4

8

SUB SP,SP,#8

ADD SP,SP,#8

STR R0,[SP,#i]

 Yes, Nyquist is satisfied fs (12kHz) > 2*fmax (2*1kHz)

EE319K Fall 2019 Final Exam Solutions Page 8

(15) Problem 12. Consider a game that has 32 circles. There is an array of sprites (Balls) specifying the current status of
each circle. Each circle has a radius of 4 pixels, and has an (x,y) coordinate of the center of the circle, two velocities, and a
life parameter. The circles are moving according to the two velocities. You may assume the Balls array has been
populated with data before your function is called. Two circles are touching if the distance from one center to the other
center is less than or equal to 8 pixels. The figure on the right shows one example with two circles at (x,y)=(50,20) and
(54,15). These circles are touching because sqrt(4*4+5*5) = sqrt(41) is less than or equal to 8 pixels. Hint: you do not need
floating point or square root to solve this problem.
typedef enum {dead,alive} status_t;
struct sprite {
 int16_t x; // x coordinate, in pixels
 int16_t y; // y coordinate, in pixels
 int16_t vx; // x velocity, in pixels/frame
 int16_t vy; // y velocity, in pixels/frame
 status_t life;}; // dead or alive
typedef sprite sprite_t;
sprite_t Balls[32]
Implement a C function that searches to see if two alive circles are touching. If two alive circles are touching, invert the
sign of the x velocities of both circles. Do not worry about 3 or more circles touching at the same time.

(50,20)

(54,15)

void Collisions(void){
int i,j;
 int32_t dx; // x distance between
 int32_t dy; // y distance between
 for(i=0;i<32;i++){
 if((Balls[i].life == alive){
 for(j=i+1;j<32;j++){
 if(Balls[j].life == alive){
 dx = Balls[i].x - Balls[j].x;
 dy = Balls[i].y - Balls[j].y;
// calculate distances
 if(((dx*dx)+(dy*dy))<=64)){
 Balls[i].vx = -Balls[i].vx;
 Balls[j].vx = -Balls[j].vx;
 }
 }
 }
 }
 }
}

