
ECE319K Final Exam Fall 2023 Page 1

UT EID: First: Last:

Instructions:

 Closed book and closed notes. No books, no papers, no data sheets (other than the addendum)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

 You have 120 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly and all subroutines AAPCS compliant.
 Please read the entire exam before starting.

(10) Question 1. Communications/UART. The baud rate is 250 bits/sec. The UART1 output
uses PA8. The microcontroller outputs one frame with data equal to 0x32 (binary 0b00110010,
ASCII ‘2’). Draw the PA8 output signal as a function of time for this one frame. Assume the
frame begins at time = 0. Assume the UART is idle before and after this one frame.

(10) Question 2. Friendly GPIO access. There is a 3-bit DAC connected to PB2-0. You can
assume PB2-0 are already initialized as outputs. Implement friendly functions that output to the
DAC in both C and assembly. Assume input parameter is a value limited from 0 to 7.
// R0 has 3-bit data
DAC3_Out:

void DAC3_Out(uint32_t data){

 EID_________________

ECE319K Final Exam Fall 2023 Page 2

(10) Question 3. Moore FSM. The system has two inputs and two outputs.

Part a) Write C code to define a struct for this FSM. Each state has an output value for PA0 and a
separate output value for PB22. Each state also has four next states, but no time delay.

typedef const state state_t; // do not change any code given to you

Part b) Complete C code to define the state transition table in ROM. No engine is required.
state_t FSM[3]={ // parts a and b must compile together
 {0,0,{S0,S1,S2,S1},
 {0,1,{S0,S0,S2,S1},
 {1,1,{0,1,0,2}
};

(10) Question 4. DAC, Ohm’s Law, KCL, KVL. All resistors are 10k. Assume VOH is 7V, VOL
is 0V, and PB2-0 are outputs. What is the DOUT voltage if the software writes a 1002 to Port B.

Hard way:
R2 = 5k, R1=10k, R0=20k, R2||R1=5*10/(5+10)=50/15=10/3k
DOUT = 5V*(10/3)/(20+10/3) = 5V*10/(60+10)=(5/7)V

Easy way:
It’s a binary-weighted DAC with range of 0 to 5V, precision of
n=3 bits, so
resolution is 5V/(2n-1), so DOUT = 5/7 V

#define S0 0
#define S1 1
#define S2 2

 EID_________________

ECE319K Final Exam Fall 2023 Page 3

(10) Question 5. LED. You are given this function, which should turn on an LED,
 void LED_On(){
 GPIOB->DOUT31_0 &= ~0x04;
 }

and are asked to interface an LED to the microcontroller, so the software operates as intended.
The LED parameters are Id = 1.8mA, Vd = 1V. The microcontroller output voltages are VOL=0.5V
and VOH = 3.2V. Show the LED interface that makes this software work. Include math to
determine any resistor values needed.

(10) Question 6) FIFO queue. There is exactly one line in Get that must be changed. Circle the
line containing the bug in Get. Show the correction required so it operates correctly. Hint:
execute two calls to Put and draw the resulting data structure. Then, execute two calls to Get to
see if your correction fixes the bug.

uint32_t PutI; // should be 0 to 7
uint32_t GetI; // should be 0 to 7
int32_t static FIFO[8];
void Init(void){
 PutI = GetI = 0;
}
int Put(int32_t data){
 if(((PutI-1)&7) == GetI) return 0;
 FIFO[PutI] = data;
 PutI = (PutI-1)&7;
 return 1;
}
int Get(int32_t *datapt){

 if(PutI == GetI) return 0;

 *datapt = FIFO[GetI];

 GetI = (GetI+1)&7;

 return 1;

}

 EID_________________

ECE319K Final Exam Fall 2023 Page 4

(10) Question 7. Local variables. The subroutine mySub has one call by value input parameter
and one output parameter. The function must be AAPCS compliant. The C version is

uint32_t mySub(uint32_t x){ uint32_t z=10; return z*x);

Typical calling sequences are
 LDR R0,=1000 uint32_t y;
 BL mySub y = mySub(1000);
 MOVS R4,R0 // set y

The input parameter x is passed in R0, but will be saved as a local on the stack. The subroutine
allocates one 32-bit local variable z, and it uses R7 frame pointer addressing to access the locals.
The binding for these two locals are

.equ x, // binding for the input parameter x

.equ z, // binding for 32-bit local variable z

mySub: PUSH {R7,LR}
 PUSH {R0} // parameter x is saved on the stack

 // allocate z

 MOV R7,SP // establish frame pointer
//---------start of body-------------------
 MOVS R0,#10

 // set z = 10, using R7

 LDR R2,[R7,#x] // R2 is input parameter x (1000)
 LDR R3,[R7,#z] // R3 is z (10)
 MULS R2,R2,R3 // R2 is z*x (10000)
//---------end of body---------------------
// balance the stack and return z*x

Fill in the above boxes with one or more lines of assembly code.

 EID_________________

ECE319K Final Exam Fall 2023 Page 5

(15) Question 8. Arrays in assembly. Translate this C to assembly (assume I is initialized to 0)

uint16_t Buff[100];

uint32_t I;

void Dump(uint16_t x){
 if(I < 100){
 Buff[I] = x;
 I++;
 }
}

 .data

 .text
Dump:
}

(15) Question 9. Collisions. Consider a game with 10 missiles and 20 lasers. There are two
sprite arrays, Missiles and Lasers. Consider each sprite as a 3 by 3-pixel square. The (x,y)
coordinate of a sprite is its lower left pixel. You may assume the arrays have been populated with
data before your function is called. A collision is defined as the overlap of any pixel of a missile
with any pixel of a laser. This first figure has no collisions. Ignore collisions from missile to
missile, and ignore collisions from laser to laser.

typedef enum {dead,alive,dying} status_t;
struct sprite{
 int32_t x; // x coordinate, in pixels
 int32_t y; // y coordinate, in pixels
 int32_t vx; // x velocity, in pixels/frame
 int32_t vy; // y velocity, in pixels/frame
 status_t life;}; // dead or alive
typedef sprite sprite_t;
sprite_t Missiles[10];
sprite_t Lasers[20];

 EID_________________

ECE319K Final Exam Fall 2023 Page 6

Implement a C function that searches for collisions. If an alive missile overlaps with an alive
laser, set both life parameters to dying. Do not worry about collisions involving 3 or more sprites
touching at the same time. This second figure shows two collisions. Your function should set the
life parameters for these four sprites to dying.

void Collisions(void){

 }
 }
 }
 }
}

