

Final Exam – Spring 2017 UT EID: ______________

1/7

Final Exam

Date: May 12, 2017

UT EID: _____________________

Printed Name: __

Last, First
 Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you
help others to cheat on this exam:

Signature:

 Instructions:
● Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages

of this Exam)
● No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell

phones off.
● Please be sure that your answers to all questions (and all supporting work that is required) are

contained in the space (boxes) provided. Do Not write answers on back of pages
● You have 180 minutes, so allocate your time accordingly.
● Unless otherwise stated, make all I/O accesses friendly.
● Please read the entire exam before starting.

Problem 1 15

Problem 2 15

Problem 3 15

Problem 4 10

Problem 5 15

Problem 6 15

Problem 7 15

Total 100

Final Exam – Spring 2017 UT EID: ______________

2/7

[15 points] Problem 1: Fundamentals. Answer the following short questions in the boxes provided.

(i) (2pt) Explain what happens when you execute the following Stack instructions.
PUSH {R0, R2}
POP {R2, R0}

(ii) (3pt) Given the following series configuration of a 10kΩ potentiometer
and a 1kΩ fixed resistor, what is the range of voltages at the input pin
PA1?

(iii) (1pt) Complete the following statement: A ____________ local variable is allocated
permanent space in the RAM.

(iv) (2pt) The input signal of the ADC has frequency components ranging from 200Hz to 2kHz.

What must the sampling frequency of the ADC be to faithfully reproduce the signal?

(v) (4pt) Let the bus clock frequency be 80MHz. Calculate the SysTick timer LOAD value so that

the timer triggers an interrupt every 1 μs?

(vi) (3pt) A Moore FSM that you implemented in Lab4 repeated a sequence of 4 steps over and

over. Complete the procedure below.

 1.
 2. Wait (optional)
 3.
 4.

Final Exam – Spring 2017 UT EID: ______________

3/7

(15) Problem 2: Finite State Machine. You may recall the bicycle with turn indicators from the first
midterm. The outputs are the five LEDs on PB4 to PB0 which flash when indicating a turn:

Left Indication

Right Indication

 The input was an accelerometer reading which is now abstracted, so you can call the function: uint8_t
get_direction(), which returns 00, 01 or, 10 to indicate to stay straight, turn right or turn left
respectively. You are required to flash the LEDS at 5Hz with 50% duty-cycle. The state-transition graph
for a Moore FSM implementation is given above (without the wait times).
Complete the code below by adding state #defines, blanks in the struct, FSM array size and entries,
state initialization, and the FSM loop.

//#defines here

struct State{
uint8_t out; // output produced in this state
uint32_t wait; // delay in ms units;
 // Can call delayms(count) to wait for count milliseconds
uint8_t next[___]; // list of next states

};
typedef struct State State_t;
State_t FSM[__] = {

}
uint8_t curState = ________; //set the initial state here
int main() {
 // All Port Initialization done for you
 // Complete the FSM loop below
 …
 while(1){

 }
}

Final Exam – Spring 2017 UT EID: ______________

4/7

[15 points] Problem 3: Hardware.
Part a(10 pt): You are given the following R-2R ladder DAC circuit for a 4-bit DAC connected to the
microcontroller port pins PB3 (MSB), PB2, PB1, PB0 (LSB). The output of the DAC is connected to a
speaker.

(i) (4pt) Mark the microcontroller port pins on the circuit schematic.
(ii) (3pt) A few rows in the table below have been completed for you. Complete the rest of the

table. (Note that the values of Vout are rounded, and that for an R-2R ladder circuit the
exact values of Vout are slightly different).

PB3 PB2 PB1 PB0 Vout (V)
0 0 0 0 0.0
0 0 0 1
0 0 1 0 0.4
0 0 1 1
0 1 0 0
1 1 1 1

(iii) (3pt) What is the range, resolution, and precision of this DAC?

Part b(5pt): You are given an MSPM0 microcontroller, an LED whose desired operating point is 1.6V
and 1.5mA, and resistors (of your choice). Interface this LED to PA2 using positive logic. Show your
connections clearly. Assume the microcontroller output voltages are VOH = 3.1V and VOL = 0.1V. Specify
values for any resistors needed. Show equations of your calculations used to select resistor values.

MSPM0

Final Exam – Spring 2017 UT EID: ______________

5/7

[10 points] Problem 4: UART.
Part a (6pt): Assuming start, stop, and data bits only, mark the frame boundaries and data bits.
Assume no breaks during transmission (frames are sent back-to-back).

Part b (4pt): What is the baud rate and bandwidth of this channel?

[15 points] Problem 5: FIFO.
Consider a struct named fix_pt_t that contains two 8-bit integer fields whole and frac. Implement
a FIFO of fix_pt_t elements. The FIFO supports the basic interface: put, get, is_empty, and
is_full, which are all functions. The function put is passed a fix_pt_t element by value and get
removes a value from the FIFO and places it in a parameter passed by reference. Let the maximum FIFO
size be a defined constant MAX_SZ.
In addition, get returns the delay, in terms of number of elements added or removed from the FIFO,
between when the element itself was added to the fifo with a put and until it is taken out with the get.
That is, the delay represents how many times put or get were called between the insertion and
removal of an element. Fill out the FIFO code below.
Note: A correct implementation of the FIFO with struct elements is worth 10 points; implementing the delay
feature will get you the full 15.

#define MAX_SZ 32
// Define your struct fix_pt_t here. 1 point.

// global variables for the FIFO. 1 point.

Final Exam – Spring 2017 UT EID: ______________

6/7

// implementations of put(fix_pt_t elem), uint8_t get(fix_pt_t *elem),
is_empty(), is_full().

// 1 point each for is_full and is_empty. 4 points each for put and get.

Final Exam – Spring 2017 UT EID: ______________

7/7

[15 points] Problem 7: Variable Fundamentals. The code below is AAPCS compliant. The relevant code given in ARM
assembly is complete (main is not given). The C part is very incomplete, but you need not fully complete it nor should you
worry about fully understanding the ASM. The question is about variables and types rather than directly on what the code does.
Hint bar is called first. Recall that each variable can be local or global and permanent or temporary (e.g., local temporary,
global permanent, local permanent).

VAR_a: .space 4

Baz:
 cmp r0, #0
 bge BazRet
 ldr r1,= 0xffffffff
 eors r0, r0, r1
 adds r0, r0, #1
BazRet:
 bx lr

.equ w, ??? <---- PartC
.equ z, 4
Foo:
 push {lr,r7,r4,r5}
 sub sp, sp, #8
 mov r7, sp

 mov r4, r0
 mov r5, #0
LabelFooA
 cmp r1, r5
 bls LabelFooB
 ldrsb r0, [r4,r5]
 str r5, [r7,#z]
 ldr r5, [r7,#w]
 blx r5
 ldr r5, [r2]
 add r5, r5, r0
 str r5, [r2]
 ldr r5, [r7,#z]
 add r5, r5, #1
 b LabelFooA
LabelFooB:
 ldr r4, =VAR_a
 ldr r0, [r4]
 add r0, r0, #1
 str r0, [r4]
 cmp r3, #0
 bge LabelFooC
 mov r0, #0
LabelFooC:
 add sp, sp, #8
 pop {lr,r7,r4,r5}
 bx lr

bar:
 push {lr,r7}
 sub sp, sp, #8
 ldr r7, =baz
 str r7, [sp]
 movs r1,#0x0f
 ands r3, r2, r1 <---- PartA
 bl foo
 add sp, sp, #8
 pop {r7,pc}

 uint32_t baz(??? a) {
 // does something useful and returns
 // see ASM, but do not convert to C
}
??? foo(int8_t A[8],
 ??? // more parameters here
) {
 // Code in foo that you need not
 // complete in C. But, line below is
 // part of the code that is important
 ++a;
 // More code
}
uint32_t bar(int8_t A[8],
 uint32_t len,
 // another param
) {
 // code that you don’t need to complete
}

 Part a (2pt): What sort of variable is r3 marked
PartA in ASM (e.g., global permanent)?

 Part b (3pt): How many parameters does foo
take?

 Part c (2pt): What is ??? marked PartC in ASM?

 Part d (2pt): What sort of variable is a inside foo
(look at C side, this one is harder)?

 Part e(2pt): What is the C99 type of baz’s input
param?

 Part f (2pt): Which of foo’s parameters are pass-
by-reference (zero or more) -- indicate by
parameter number.

 Part g (2pt): What is the type of foo’s last input
param? Use C syntax but explain in words
otherwise (this one is harder).

