Final Exam

Date: May 12, 2017

UT EID: \qquad
\qquad

Printed Name: \qquad
Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam:

Signature:

Instructions:

- Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this Exam)
- No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
- Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space (boxes) provided. Do Not write answers on back of pages
- You have 180 minutes, so allocate your time accordingly.
- Unless otherwise stated, make all I/O accesses friendly.
- Please read the entire exam before starting.

Problem 1	15	
Problem 2	15	
Problem 3	15	
Problem 4	10	
Problem 5	15	
Problem 6	15	
Problem 7	15	
Total	100	

[15 points] Problem 1: Fundamentals. Answer the following short questions in the boxes provided.
(i) (2pt) Explain what happens when you execute the following Stack instructions. PUSH \{R0, R2\}
POP $\{R 2, R 0\}$

(ii) (3pt) Given the following series configuration of a $10 k \Omega$ potentiometer and a $1 \mathrm{k} \Omega$ fixed resistor, what is the range of voltages at the input pin PA1?

(iii) (1pt) Complete the following statement: A \qquad local variable is allocated permanent space in the RAM.

(iv) (2pt) The input signal of the ADC has frequency components ranging from 200 Hz to 2 kHz . What must the sampling frequency of the ADC be to faithfully reproduce the signal?

(v) (4pt) Let the bus clock frequency be 80 MHz . Calculate the SysTick timer LOAD value so that the timer triggers an interrupt every $1 \mu \mathrm{~s}$?

(vi) (3pt) A Moore FSM that you implemented in Lab4 repeated a sequence of 4 steps over and over. Complete the procedure below.
1.
2. Wait (optional)
3.
4.
(15) Problem 2: Finite State Machine. You may recall the bicycle with turn indicators from the first midterm. The outputs are the five LEDs on PB4 to PB0 which flash when indicating a turn:

Left Indication

Right Indication

The input was an accelerometer reading which is now abstracted, so you can call the function: uint8_t get_direction(), which returns 00,01 or, 10 to indicate to stay straight, turn right or turn left respectively. You are required to flash the LEDS at 5 Hz with 50% duty-cycle. The state-transition graph for a Moore FSM implementation is given above (without the wait times).
Complete the code below by adding state \#defines, blanks in the struct, FSM array size and entries, state initialization, and the FSM loop.

//\#defines here

```
struct State{
    uint8_t out; // output produced in this state
    uint32_t wait; // delay in ms units;
            // Can call delayms(count) to wait for count milliseconds
    uint8_t next[___]; // list of next states
};
typedef struct State State_t;
State_t FSM[__] = {
}
uint8_t curState = _______; //set the initial state here
int main() {
    // All Port Initialization done for you
    // Complete the FSM loop below
    ..
    while(1){
    }
}
```


[15 points] Problem 3: Hardware.

Part a(10 pt): You are given the following R-2R ladder DAC circuit for a 4-bit DAC connected to the microcontroller port pins PB3 (MSB), PB2, PB1, PB0 (LSB). The output of the DAC is connected to a speaker.

(i) (4pt) Mark the microcontroller port pins on the circuit schematic.
(ii) (3pt) A few rows in the table below have been completed for you. Complete the rest of the table. (Note that the values of Vout are rounded, and that for an R-2R ladder circuit the exact values of Vout are slightly different).

PB3	PB2	PB1	PB0	Vout (V)
0	0	0	0	0.0
0	0	0	1	0.4
0	0	1	0	
0	0	1	1	
0	1	0	0	
1	1	1	1	

(iii) (3pt) What is the range, resolution, and precision of this DAC?

Part b(5pt): You are given an MSPM0 microcontroller, an LED whose desired operating point is 1.6 V and 1.5 mA , and resistors (of your choice). Interface this LED to PA2 using positive logic. Show your connections clearly. Assume the microcontroller output voltages are $\mathrm{V}_{\mathrm{OH}}=3.1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=0.1 \mathrm{~V}$. Specify values for any resistors needed. Show equations of your calculations used to select resistor values.

$$
\underline{I}
$$

[10 points] Problem 4: UART.

Part a (6pt): Assuming start, stop, and data bits only, mark the frame boundaries and data bits. Assume no breaks during transmission (frames are sent back-to-back).

Part b ($4 \mathbf{p t}$): What is the baud rate and bandwidth of this channel?

[15 points] Problem 5: FIFO.

Consider a struct named fix_pt_t that contains two 8 -bit integer fields whole and frac. Implement a FIFO of fix_pt_t elements. The FIFO supports the basic interface: put, get, is_empty, and is_full, which are all functions. The function put is passed a fix_pt_t element by value and get removes a value from the FIFO and places it in a parameter passed by reference. Let the maximum FIFO size be a defined constant MAX_SZ.
In addition, get returns the delay, in terms of number of elements added or removed from the FIFO, between when the element itself was added to the fifo with a put and until it is taken out with the get. That is, the delay represents how many times put or get were called between the insertion and removal of an element. Fill out the FIFO code below.
Note: A correct implementation of the FIFO with struct elements is worth 10 points; implementing the delay feature will get you the full 15.

```
#define MAX_SZ 32
```

// Define your struct fix_pt_t here. 1 point.
// global variables for the FIFO. 1 point.
// implementations of put(fix_pt_t elem), uint8_t get(fix_pt_t *elem), is_empty(), is_full().
$/ / 1$ point each for is_full and is_empty. 4 points each for put and get.
\qquad
[15 points] Problem 7: Variable Fundamentals. The code below is AAPCS compliant. The relevant code given in ARM assembly is complete (main is not given). The C part is very incomplete, but you need not fully complete it nor should you worry about fully understanding the ASM. The question is about variables and types rather than directly on what the code does. Hint bar is called first. Recall that each variable can be local or global and permanent or temporary (e.g., local temporary, global permanent, local permanent).

```
VAR_a: .space 4
Baz:
    cmp r0, \#0
    bge BazRet
    ldr \(r 1,=0 x f f f f f f f f\)
    eors r0, r0, r1
    adds r0, r0, \#1
BazRet:
    bx lr
.equ w, ??? <---- PartC
.equ z, 4
FOO:
    push \(\{1 r, r 7, r 4, r 5\}\)
    sub sp, sp, \#8
    mov r7, sp
    mov r4, r0
    mov r5, \#0
LabelFooA
    cmp r1, r5
    bls LabelFooB
    ldrsb r0, [r4,r5]
    str r5, [r7,\#z]
    ldr r5, [r7,\#w]
    blx r5
    ldr r5, [r2]
    add r5, r5, r0
    str r5, [r2]
    ldr r5, [r7,\#z]
    add r5, r5, \#1
    b LabelFooA
LabelFooB:
    ldr r4, =VAR_a
    ldr r0, [r4]
    add r0, r0, \#1
    str r0, [r4]
    cmp r3, \#0
    bge LabelFooC
    mov r0, \#0
LabelFooC:
    add sp, sp, \#8
    pop \(\{1 r, r 7, r 4, r 5\}\)
    bx lr
bar:
    push \{lr,r7\}
    sub sp, sp, \#8
    ldr r7, =baz
    str r7, [sp]
    movs r1, \#0x0f
    ands r3, r2, r1 <---- PartA
    bl foo
    add sp, sp, \#8
    pop \(\{r 7, p c\}\)
```

```
uint32_t baz(??? a) {
    // does something useful and returns
    // see ASM, but do not convert to C
}
??? foo(int8_t A[8],
                ??? // more parameters here
                    ) {
    // Code in foo that you need not
    // complete in C. But, line below is
    // part of the code that is important
    ++a;
// More code
}
uint32_t bar(int8_t A[8],
                        uint\overline{32_t len,}
        // another param
    ) {
// code that you don't need to complete
```

\}
Part a (2pt): What sort of variable is r3 marked
PartA in ASM (e.g., global permanent)?

Part b (3pt): How many parameters does foo take?

Part c (2pt): What is ??? marked PartC in ASM?

Part d (2pt): What sort of variable is a inside foo (look at C side, this one is harder)?

Part e(2pt): What is the C99 type of baz's input param?

Part f (2pt): Which of foo's parameters are pass-by-reference (zero or more) -- indicate by parameter number.

Part g (2pt): What is the type of foo's last input param? Use C syntax but explain in words otherwise (this one is harder).

