

Final Exam – Spring 2019 UT EID: ______________

1/10

Final Exam

Date: May 16, 2019
UT EID: _____________________

Printed Name: __

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you
help others to cheat on this exam:
Signature:

 Instructions:
● Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages

of this Exam)
● No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell

phones off.
● Please be sure that your answers to all questions (and all supporting work that is required) are

contained in the space (boxes) provided. Do Not write answers on back of pages
● You have 180 minutes, so allocate your time accordingly.
● Unless otherwise stated, make all I/O accesses friendly.
● Please read the entire exam before starting.

Problem 1 15 RY

Problem 2 10 JV

Problem 3 15 RY

Problem 4 15 MT

Problem 5 5 JV

Problem 6 10

Problem 7 15 RY

Problem 8 15

Total 100

Final Exam – Spring 2019 UT EID: ______________

2/10

[15 points] Problem 1: Fundamentals. Answer the following short
questions in the boxes provided.

(i) (3pt) Consider an LED with a desired operating point of
2V, 20 mA. The 2V, 20mA point is shown as a dot on the
graph. Make a rough sketch of the LED current as a
function of LED voltage. Include all voltages from -3 to
+3V

For parts ii) iii) iv) consider this piece of C code

static uint16_t x=5;
uint16_t Operate(const uint16_t y){
 static uint16_t z=6;

For parts ii) iii) and iv) answer one letter A-H
A) Forces compiler to not optimize the access
B) Places the variable in nonvolatile ROM
C) Forces the variable to be placed in a register
D) Places the variable in volatile RAM

E) Makes the variable private to the file
F) Makes the variable private to the function
G) Restricts function from modifying parameter
H) Places the variable to be placed on the stack

(ii) (2pt) Why do we add the keyword static to the variable x?

(iii) (2pt) Why do we add the keyword const to the y parameter?

(iv) (2pt) Why do we add the keyword static to the variable z?

(v) (6pt) Draw the UART waveform for a frame when a byte 0xf0 is transmitted. Each bit
time is one time slot on the plot. The frame starts at Time=0 and goes right. Assume
the UART is idle prior to this frame.

Time 0

Final Exam – Spring 2019 UT EID: ______________

3/10

[10 points] Problem 2: DAC.
Given the 3-bit DAC with the 5V reference,
provide the NUMERICAL EXPRESSION for
the input voltage seen at the ADC input for
the following DAC output codes with the
100 Ω load attached. The ADC reference is
also 5V.

For each question below, a numerical
answer is not required. Instead,
provide a NUMERICAL
EXPRESSION(you may leave it as
unreduced) for your answer.

 DAC output code
(binary)
b2 b1 b0

ADC input voltage expression (V)

(a)

0 0 0

(b)

0 0 1

(c)

0 1 0

(d)

1 0 0

(e)

1 1 1

Final Exam – Spring 2019 UT EID: ______________

4/10

[15 points] Problem 3: Finite State Machine. The following state-machine is designed to be an Odd 1’s
detector. It detects if there are an odd number of 1’s in a stream of 0’s and 1’s. It outputs a 1 when the
stream thus far has an odd number of 1’s, a 0 otherwise.

1. (3 points) What are the values of A, B and C in the FSM state-graph shown above.

2. (7 points) The code below encodes this FSM in software. Fill in the missing pieces (marked
________).

#define Odd ________

#define Even ________
struct State {
 uint32_t out;

 uint32_t next[________];
}
typedef const struct State State_t;
State_t FSM[2]={

{________,{Even,________}},

{________,{Odd,________}}
};

int main(){uint32_t in;
 uint32_t CS=Even;
 while(1){
 doOutput(FSM[CS].out);
 in = getInput();
 CS = FSM[CS].next[in]; // XXX
 }
}

3. (5 points) Give the assembly code conversion of the one line of C code marked XXX, above. You

may assume that CS and in are allocated in registers R1 and R2 respectively.

A
=

C
=

B
=

Final Exam – Spring 2019 UT EID: ______________

5/10

[15 points] Problem 4: LED Interfacing and ADC
Valvano mixed up his two bags of LEDs. Now there is one bag with both types in it. You will help him
sort them. The two possible LED types have operating points of either (3V,1mA) or (4V,10mA). A
microcontroller interfaces to the circuit below, monitoring the voltage and computing the current.
This allows you to determine which type of LED is connected. The ADC converter voltage range is
[0V, 5V] (different from the MSPM0 range which is [0,3.3V]).

The LEDs do not need to light up, the test system must be able to distinguish one type from the other
without destroying the LED. For each question below, a numerical answer is not required. Instead,
provide a NUMERICAL EXPRESSION (you may leave it unreduced) for your answer.

(a) (5pts) Compute the resistor values for the two LED types.

R (ohms) =(5-4)/10mA = 100

R (ohms) =(5-3)/1mA = 2K

(b) (5pts) If you can choose only one of the above resistor values to distinguish between the two
LED types, which is an appropriate choice and why?

2K so low current LED is not damaged
I = (5-4)/2000 = 0.5mA (will not light up)
I= (5-3)/2000 = 1mA (will light up)

(c) (5pts) If using a 13-bit ADC converter, what is the ADC digital value when the current is 1mA?
Show your work.

I=1mA, R=2000, VR=2V, VADC=3V, N = 3*8191/5

5V

Vin

A
D
C

uC

(3V,1mA)
 or
(4V,10mA)

5V

R

Final Exam – Spring 2019 UT EID: ______________

6/10

[5 points] Problem 5: Write a C function that takes a null-terminated string as an input and outputs the
string to the UART using busy-wait synchronization (assuming UART0 initialize is already done). To
transmit one frame, wait for room in the TxFifo and then write to UART0->TXDATA.

_______UARTOutString(____________________){

}

[10 points] Problem 6: Translate the following C code to assembly. The local variable v5 must be
allocated in the stack. Follow AAPCS guidelines for parameter-passing.
uint32_t var_test (uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4){
 uint8_t v5 = v3 * v4; // assembly code MUST store v5 on stack
 return v5;
 }
int main(void){uint32_t x;
 x = var_test(1,2,3,4); // x will become 12 (3*4)
 while(1){};
}

var_test:

 BX LR

main:

Final Exam – Spring 2019 UT EID: ______________

7/10

[15 points] Problem 7: Queue and/or Stack.
You will complete the implementation of a data structure (called QS) that provides both a FIFO (First In
First Out like a Queue) and LIFO (Last In First Out like a Stack) access mechanism. A wrap-around
circular buffer (see figure below) is used to store the items being enqueued/dequeued and
pushed/popped. A partially complete implementation of the data structure is given below with two
missing subroutines (on next page) which you have to complete. You are not allowed to add any other
variables to the implementation. Note that the same routine, QS_Add can be used to both enqueue an
item and push an item to QS. The two routines you are to implement involve removing an item, when
QS is treated as a Queue (QS_DeQ) and, when QS is treated as a Stack (QS_Pop).

// Variables and Constants
#define N 8 // Capacity is 7
#define Fail 0
#define Success 1
char QS[N]; // Data store
// index of oldest item
uint8_t oldI;
// index of next item to be added
uint8_t newI;

// Initialize the QS, making it empty
// Input: None
// The QS is empty
void QS_Init(){
 oldI = newI = 0;
}

// Adds an item to QS
// Input: data has item to add
// Output: Success or Fail
uint8_t QS_Add(char data){
 if ((newI+1)%N == oldI)
 return Fail;
 QS[newI] = data;
 newI = (newI+1)%N;
 return Success;
}

The following figure shows how the three operations work. The leftmost figure shows the state of QS
after some arbitrary Add, DeQ and Pop operations have been performed, leaving 3 items with oldest
(B) at index 2 and newest (G) at index 4. The second figure from left shows the state of QS after adding
an item (S). The third figure shows the state after an item(B) is de-queued, and the last shows the state
after an item (S) is popped.
Note: The figure only shows valid items; inaccessible items need not be cleared on a dequeue/pop
operation.

 QS

oldI=2;
newI=5

 QS

oldI=2;
newI=6

QS_Add(S)

 QS

oldI=3;
newI=6
 ch = B

QS_DeQ(&ch)

 QS

oldI=3;
newI=5
 ch = S

QS_Pop(&ch)

Final Exam – Spring 2019 UT EID: ______________

8/10

(6 points)
// De-queues oldest item from QS
// Input: Pointer to data to hold item removed
// Output: Success or Fail
uint8_t QS_DeQ(char *data){
 if (newI == oldI)
 return Fail;
 *data = QS[oldI];
 oldI = (oldI+1)%N;
 return Success;

}

(9 points)
// Pops newest item from QS
// Input: Pointer to data to hold item removed
// Output: Success or Fail
uint8_t QS_Pop(char *data){
 if (oldI==newI) return Fail;
 if (newI==0) {
 *data = QS[Size-1];
 newI = Size-1;
 } else {
 *data = QS[newI-1];
 newI = newI-1;
 }
 return Success;

}

Final Exam – Spring 2019 UT EID: ______________

9/10

[15 points] Problem 8: programming, design.
Consider a game with birds flying in a 2-D world. The parameters of a bird are stored as fields in a
structure. The parameters x,y are the center coordinates of the bird in 2-D space, which are the integer
components of 32-bit signed binary fixed-point numbers. The resolution of the fixed-point number
system is 1/256 meters. For example, if a position parameter is 2.125 meters, then the integer stored in
memory is 2.125*256 = 544. You will write two functions, one to detect collision and one to process elastic
bouncing. The movement occurs every 10ms (100 Hz), so the units of velocity are meters/10ms. We
define a bird as a circle of radius 0.25 meters. A bird that is dead or lost will not move, will not be
drawn, and will not be considered for collision detection. A bird that is alive will move, will be drawn,
and will considered for collision detection. You may not add any fields to this structure. You may not
add more global variables. You do not need to move or draw the birds.

typedef enum {dead,lost,alive} status_t;
typedef struct{
 int32_t x,y; // 2-D position in 1/256 meter
 int32_t vx,vy; // 2-D velocity in 1/256 meter/10ms
 const int16_t *image; // pointer image to draw
 status_t life; // dead/alive
} Bird_t;
There are 100 birds in the game, defined in global RAM like this
Bird_t Flock[100];

The first function you will write will determine if two birds have collided. For this function, you assume
both birds are alive. A collision is defined if the distance from the center of one bird to the center of the
other bird is less than or equal to 0.5 meters. Think about how to do this without using square root;
however, partial credit will be given if you call an existing integer sqrt() function. No credit will be given
for using floating point. The prototype for your first function is
// Input: pointers to two birds
// Output: true if these two birds have collided, false if not collided
int Collision(Bird_t *p1, Bird_t *p2);

The second function you will traverse the array of 100 birds, and check if any two birds have collided.
A collision event can occur between any two birds that are both alive. Consider birds 1 and 2 with masses
m1, m2, and velocities u1, u2 before collision, v1, v2 after collision. An elastic collision in physics conserves
both momentum (m*v) and kinetic energy (0.5*m*v2). In an elastic collision,
 v1 = (m1- m2)*u1/(m1+m2) +2*u2*m2/(m1+m2)
 v2 = (m2- m1)*u2/(m1+m2) +2*u1*m1/(m1+m2)
If the two birds have the same mass (m1=m2), this simplifies to swapping the velocities
 v1 = u2
 v2 = u1
You will implement elastic collisions in both x and y dimensions, More specifically, if a collision occurs,
swap the vx between the two birds, and swap the vy between the two birds. You must call the
Collision function in part a) to determine if a collision has occurred. Be careful not to swap the
velocities twice. E.g., if bird 12 has collided with bird 37, then bird 37 will also have collided with bird
12. On a collision, please change the vx vy of both birds once and not twice. You do not have to
specifically handle the case with 3 or more birds colliding at the same time. Do not change the life
parameter. The prototype for your second function is
void ElasticBounce(void);

You may use this swap function if you wish

x1,y1

x2,y2

Final Exam – Spring 2019 UT EID: ______________

10/10

void swap(int32_t *pt1, int32_t *pt2){int32_t data;
 data = *pt1; *pt1 = *pt2; *pt2 = data;
}

(7) Part a) Write the collision function in C
int Collision(Bird_t *p1, Bird_t *p2){

(8) Part b) Write the bounce function in C
void ElasticBounce(void){

