
ASEE Austin, TX May 7, 1999 Page 1

Real Time Data Acquisition and Control

by

Jonathan W. Valvano, Bapi Ahmad and Jagadish Nayak
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712

Abstract
This paper presents a laboratory environment for the development of real time data

acquisition and control on the IBM-PC platform. The laboratory station involves the
integration of low-cost computer technology with powerful software components which
empower the student to efficiently and effectively construct real time systems. The software
base integrates an editor, a spreadsheet, and a real time programming environment built
around Druma FORTH. We have written multiple FORTH libraries to assist the student in
the translation of engineering concept into creation. Real time events are managed using a
rich set of FORTH software routines which guarantee that time-critical software is executed
on schedule. The real time color-VGA graphic library includes many types of windows.
We have developed an extendible debugging tool called PROSYM (PROfiler and SYMbolic
debugger.) PROSYM provides a simple set of primitives with a high expressive power that
may be used singly or may be combined to construct customized debugging tools. In
addition to providing basic debugging functions, PROSYM supports an event-action model
of debugging. We have evaluated this development system on the full range of PC
platforms from the original PC-XT to the newest 486 systems. The environment has been
used for two years by Biomedical and Electrical Engineering graduate students performing
both teaching and research projects.

Introduction
The purpose of any laboratory experience is allow the student to develop, apply and

evaluate engineering concepts in a practical manner. A well-organized laboratory course can
be an effective teaching experience, while a poorly-run lab will cause undue hardship on
both the student and the faculty. We have attempted to assemble the hardware and software
components for a graduate level class on real time data acquisition and control. The class
combines both Electrical and Biomedical Engineering aspects as shown in Table 1.

Electrical Engineering Biomedical Engineering
 • microcomputer interfacing • medical instrumentation
 • real time data acquisition • signal processing
 • analog instrumentation • transducer physics
 • control systems • patient safety
 • quality programming • effective human interfaces

Table 1. The objectives of the class involve the integration of EE and BME disciplines.

The key is to provide sufficient tools (with appropriate documentation) so that the
student can quickly and effectively deal with the fundamental educational issues of the class
(Table 1) without being overwhelmed with the complexities of the machine. On the other
hand, we feel that complete isolation from the computer, as is the case with National
Instruments Labview, inhibits the student from dealing with the Electrical Engineering
aspects of the instrument. This problem is accentuated when the details of the
hardware/software interface play a critical role in the engineering design decision. In the
educational setting, it is particularly important for the student to have the power and control
to manipulate the computer so that the trial and error experimental process of learning is

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 2

allowed to flow smoothly. In addition to control, there must be facilities for performance
evaluation, so that the student can effectively compare and contrast alternative designs.

What is FORTH?
C.L. Moore created FORTH in 1972 as a programming language to control his

telescope. Moore chose the name FORTH because he considered it to be a fourth
generation programming language. Our FORTH is more than a programming language, it
is an integrated software environment including an editor, an Intel 80x86 assembler, high
level language compiler, interpreter, debugger, real time graphics, floating point, file
system and real time operating system. The FORTH environment is efficient for the
development of real time instrumentation and embedded-control systems. The FORTH
interpreter, along with its simple structure, facilitate programming for the beginner as well
as the experienced software engineer.

FORTH provides links to any editor on the PC. The editor is used to create and
modify user programs. The FORTH compiler can then be invoked to produce new
definitions with fast execution speeds. Even on a modest computer (12MHz 286), the
edit/compile/download/run programming cycle is as fast as 20 seconds. The interpreter can
be used to develop and test new functions. The interpreter allows for effective interaction
between the student and the machine. The program development stage can be operated
under DOS or Windows. In the real time execution phase however, the system runs only
under DOS. This is because the scheduling of real time events can not be guaranteed under
Windows. The real power of FORTH comes from its inherent extendibility. The user is
provided with an initial set of language elements, and the ability to add new elements to the
working set. The true beauty of FORTH programming lies in the fact that one has complete
control over the computer hardware (e.g., I/O devices written in assembly language) but
still has a rich and extensible set of high level language constructs.

FORTH provides links to any executable program on the PC (e.g., editors, spread
sheets, networks.) Typically students transmit data into a spreadsheet (including those on
the Macintosh) for analysis and report generation.

The version of FORTH that is used in our lab was developed at Druma Inc. of
Austin Texas. One of the truly exiting aspects of Druma FORTH is its debugger, which is
described later. Table 2 gives a list of library routines available.

Library Features
Fixed Point arithmetic, number conversion, and input/output
Floating Point trig, ln, exp, arrays, number conversion, and input/output
Data Acquisition A/D input, D/A output, and digital input/output
Timer 16/32 bits, stopwatch features, and real time synchronization
Communications Serial/parallel input/output
DSP FFT, PID controllers, curve fitting, thermocouple standards
Simple Graphics points, lines, rectangles, ellipses
Window Graphics scroll, sweep, bar, pie, text, annunciator, logic, and meter graphs
File system save/load multiple text/data files, virtual memory

Table 2. List of available libraries and their features.

Why FORTH?
One of the fundamental reasons for choosing FORTH as the programming base for

this lab is that FORTH supports the concept of hierarchically layered programming. In
other words, on the highest level the beginning student can piece together existing library
routines, and create a powerful data acquisition system in a couple of hours (similar to what
one can do with Labview.) On the other hand, the advanced student has access in a
hierarchical manner to all lower level routines including assembly language. This access
provides the student the knowledge of how the computer works and power to actually

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 3

integrate the fundamental theories into an effective data acquisition system. The dual nature
of FORTH (editor/compiler for execution speed and interpreter for ease of debugging) is
quite useful in the teaching environment.

Figure 1. Front panel display of a real time evoked potential instrument.

Programming Style
Inherent in the development of software is the desire to create modular and

structured procedures. Although assembly language is efficient both statically and
dynamically, it suffers due to the difficulty in debugging, maintaining, and extending.
FORTH is a structured language that facilitates modular programming. In FORTH,
procedures are called WORDs. Each word should have a simple well-defined interface,
and the body should be functionally complete with minimal side effects. Parameters are
passed via the parameter stack or via global variables. The DICTIONARY is a linked list
of all words. When a new word is defined, it is added to the dictionary hence extending the
power of the system. We consider the one-pass nature of FORTH to be valuable asset,
rather than a limitation. Since the compiler is one-pass, the programmer is forced to define
words in a bottom-up hierarchical fashion. The FORTH assembler is also one-pass,
substituting assembly language versions of the begin until and do loop structures. Without
a GOTO the programmer naturally creates modular and structured programs. The
programmer starts with about 1000 predefined system words.

Stacks
FORTH is a stack-based language. There are three stacks implemented in FORTH.

The stacks are standard first in last out push down data structures. The Parameter Stack
is the most visible stack. Most FORTH words use this stack for their inputs and outputs.

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 4

When a integer literal is executed, its value (16 bit) is pushed on the stack. When a integer
constant is executed, its value (16 bit) is pushed on the stack. When a variable or array is
executed its address (16 bit offset, with implied ES segment register) is pushed on the
stack. It is implemented using the 80x86 SS:SP registers. To optimize for speed, the top of
stack is stored in BX. The parameter stack is also used for do loop and begin until
blocks. It contains the pointers and index values to implement nested loops.

The Return Stack contains return addresses when one FORTH word calls
another. It is implemented using the 80x86 SS:BP registers. The execution of FORTH
involves the indirect subroutine call of a list words.

The computer has an Intel 80x87 math coprocessor. External to the 80x87, floating
point numbers are 32 bits or 64 bits. Internal to the 80x87 all numbers are 80 bit temporary
reals. The 80x87 has an eight level hardware Floating Point Stack. The FORTH
system uses this hardware stack for floating point parameters. When a floating point literal
is executed, its value is pushed on the floating point stack. When a floating point variable
or array is executed, its 16 bit address is pushed on the parameter stack.

Real time execution
Assembly language may be used for time critical portions of the program. The

FORTH compiler is only one pass. Assembly language jumping is handled in a structured
and disciplined manner, similar in syntax and function to the begin end, or do loop
high level language structures. Assembly language labels and forward jumping are
possible, although careless jumping or “spaghetti” code is strongly discouraged. Time is a
critical parameter for most instruments. FORTH supports interrupt programming. The
system includes a programmable real time clock. The following real time data acquisition
program illustrates the programming style. Comments are italicized.
\ FORTH programs begin with the global variables.
\ Multiple access circular queue (MACQ)
variable x(n) \ Current sample Note: “x(n)” is its name
variable x(n-1) \ Previous sample
variable x(n-2) \ Previous sample
variable y(n) \ Current filter output
\ The simple low level words are defined next:
: ClearMACQ (--) \ Initialize values in the MACQ to 0
 0 x(n) ! 0 x(n-1) ! 0 x(n-2) ! ;
: Enter (n --) \ n = new value, put into MACQ

x(n-1) @ x(n-2) ! \ Shift data down the MACQ
x(n) @ x(n-1) !
x(n) ! ; \ x(n)=new value

: Filter (--) \ 60 Hz Notch Filter y(n)=(x(n)+x(n-2))/2
x(n) @ x(n-2) @ + 2/ y(n) ! ; \ Update y(n)

\ High level words are last.
: DAS (--) \ Continuous Data Acquisition System fs=240Hz
 ClearMACQ \ Initialize data structures
 0 Mux \ Set A/D channel 0
 rtSetupScrollGraph \ initialize scroll graph window
 240 SetFs \ establish 240Hz A/D sampling
 begin
 Wait \ Synchronize process to 240 Hz
 A/D \ Sample A/D
 Enter \ Put into X array
 Filter \ Execute digital filter
 rtUpdateScrollGraph \ Update Scroll graph window
 key? until ; \ loop until a key is pressed

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 5

Real Time Graphics
A library of real time graphics routines allow the student to create complex color

displays. The real time VGA graphic library includes many types of windows: text,
annunicators, bar graphs, scroll graphs, sweep graphs, arc meters, logic graphs, and x-y
scatter graphs. Figures 1 and 2 illustrate the power and flexibility of these routines. These
routines include curve-fitting, PID controllers and FFT calculations.

Figure 2. Real time graphics display for dual channel pressure monitor.

Prosym
PROSYM (PROfiler and SYMbolic debugger) provides a common methodology

for program monitoring and debugging. PROSYM is an extendible debugging tool
implemented as a test bed and research platform. We have had tremendous success using
PROSYM both in teaching software techniques, and in developing embedded real-time
instruments.

The key features of PROSYM are its interpreter, user-programmable conditional
breakpoints, and the ability to append user-defined programs (in the native language)
before and after each trap. It has the ability to analyze the real-time execution of multi-
tasking software systems. PROSYM provides a simple set of primitives with a high
expressive power that may be used singly or may be combined to construct complex
debugging tools. The programmability feature allows the user to develop powerful
customized debugging tools. In addition to providing basic debugging functions,
PROSYM supports an event-action model of debugging. The event-action model provides
mechanisms that allow reasoning about events and allow events to be traced and timed at
different levels of abstraction. PROSYM allows correction via documented patches

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 6

without disrupting program structure. PROSYM is non-intrusive and non-invasive. The
normal sequence for setting a trap instrument is as follows:
1. Identify an instrumentation point
2. Set trap conditional, preattach and postattach
3. Insert trap instrument

Instrumentation points are identified by name. They may be global or local. The
Trap command identifies a global instrumentation point, and the RTrap command
identifies a local instrumentation point. Global instrumentation points are defined on entry
points to routines or identifiers (all calls to the routine), and local instrumentation points are
defined on points of invocation (only calls to the routine from a specified point).

A trap instrument consists of a trap conditional, two attachments, and a trap
handler. Trap conditionals are user or system defined routines that return a logical condition
for evaluation by a trap instrument. Two system defined trap conditionals are Halt and
Continue. Halt asserts "invoke trap handler" by always returning true and Continue
asserts "bypass trap handler" by always returning false. Trap conditionals are set using the
Set_Conditional (SC) command. The default trap conditional is Halt.

The two attachments, preattach and postattach, are arbitrary user defined routines.
Preattach is set using the Set_PreAttach (SPR) command and postattach is set using
the Set_PostAttach (SPO) command. System defaults for preattach and postattach are
null routines.

The trap handler is a system routine that normally returns control to the command
interpreter. Unless redirected, the command interpreter takes its input from the keyboard
and sends its output to the screen. The trap instrument invokes the trap handler depending
on the truth value returned by the trap conditional. A list of instrumentation points and their
trap instruments is maintained in a trap table.

When the locus of execution reaches an active instrumentation point, the associated
trap instrument is invoked. Upon invocation, a trap instrument does the following:

1. Invokes pre-attach.
2. Invokes trap conditional (returns a logical true/false).
3. Invokes the trap handler depending the trap conditional.

If true then the trap instrument invokes the trap handler (halts).
If false then the trap instrument bypasses the trap handler (continues).

4. Executes the routine at the trap point.
5. Invokes post-attach.

Pre-attach, therefore, executes at the instrumentation point before the trap conditional
executes, and post-attach executes just before the trap instrument relinquishes control.

The following example illustrates the power and flexibility of PROSYM. The
purpose is to verify the A/D sampling rate in the previous real time data acquisition system.
array Times 4800 allot \ place for 2400 time measurements
PT variable \ pointer to where to put next
Times PT ! \ initialize PT to beginning
: Next (--)
 ReadTime \ current time (16bits) from hardware clock
 PT @ ! \ put into Times array
 PT @ 2+ Times 4798 + min \ prevents overflow
 PT ! ; \ update pointer to next measurement
RTrap A/D DAS \ trap A/D word within DAS
SC continue \ do not halt, i.e., keep on executing
SPR Next \ (preattach) execute Next before each A/D

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 7

After the above debugger commands are executed, the timing experiment is performed
simply by running DAS. After DAS is stopped, the array Times can be printed out in order
to verify the accuracy of the “real time” process. The maximum time jitter is less than 5 µs
on our 12 MHz 286 machine. The fact that debugging occurs without source code
modification has two advantages. First, one is guaranteed that the actual system is being
tested, and not one which has been modified by the edit/compile/download cycle. The
second advantage is that it is easy to remove all debugger functions (with a Remove_All
command) guaranteeing that the system is left with no unintentional debugger side-effects.

The following example uses the debugger to convert the 16 bit A/D system into 12
bits. In this way, the student can study the effect of A/D precision on system performance.
hex
: Reduce (n1 -- n2) \ Convert 16 bit n1 into 12 bit n2
 FFF0 and ; \ make the bottom 4 bits zero
Trap A/D \ trap all calls to A/D
SC Continue \ do not halt, i.e., keep on executing
SPO Reduce \ (postattach) execute Reduce after A/D
Once this debugging instrument is invoked, the software system is run in its usual fashion.
Every call to the A/D sample routine will now return a 12 bit instead of a 16 bit value.

This last example illustrates how the debugger can be used to measure software
timing information in real time. The routines StartClk and StopClk start and stop an
interval timer. Our system has both a 16 bit and a 32 bit timer, both with a time resolution
about 1 µs. These functions use the existing hardware clock on every PC. The following
debugger sequence performs multiple execution speed measurements:
array Times 4800 allot \ place for 2400 time measurements
PT variable \ pointer to where to put next
Times PT ! \ initialize PT to beginning
: SaveClk (--)
 StopClk \ Stop time interval measurement
 CurrentTime @ \ current time measurement (16bits)
 PT @ ! \ put into Times array
 PT @ 2+ Times 4798 + min \ prevents overflow
 PT ! ; \ update pointer to next measurement
Trap Filter \ Measure the execution speed of Filter
SC Continue \ do not halt, i.e., keep on executing
SPR StartClk \ (preattach) start timer before Filter
SPO SaveClk \ (postattach) save time after Filter
Once this debugging instrument is invoked, the software system is again run in its usual
fashion. The overhead involved in making these measurements ranges from 10 to 50 µs
depending on the processor speed. An important advantage of this process is that the
debugging is performed in real time on the actual hardware/software system. After the
system has been executing a while, statistical analysis of the array Times will yield simple
parameters like maximum and average execution speed, as well as more complex statistical
information like probability density function.

Comparison between FORTH and Labview

Consider the analogy of the spreadsheet and the accountant. If the person
understands the fundamentals of accounting, then the spreadsheet can be a very powerful
tool. On the other hand, the spreadsheet by itself does not teach accounting. In a similar
way, Labview can be a powerful tool for the experienced engineer, but not for the student.
When developing a real time data acquisition or control system, the electrical engineer must
be able to make design choices based on realistic limitations of the hardware and software.
Therefore, the educational laboratory environment must empower the student with the
ability to control and evaluate this hardware/software interaction.

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 8

Conclusions
This paper presents a laboratory environment for the development of real time data

acquisition and control on the IBM-PC platform. The minimum hardware system includes
a PC-clone, a math coprocessor, 640 Kbytes of RAM, 10 Mbytes of hard disk space, and
VGA color graphics. The only add-on hardware that is required is an A/D&D/A data
acquisition board. The system runs under both Windows and DOS. The software base
integrates an editor, a spreadsheet, and a real time programming environment built around
Druma FORTH. We have written many FORTH libraries to assist the student in the
translation of engineering concept into creation. The system establishes software links to
any commercially-available editor or spreadsheet program including those on the
Macintosh. There are both fixed point and floating point math packages. These routines
include curve-fitting, PID controllers and FFT calculations. Simple easy-to-use drivers
interface both digital and analog I/O signals to the system. We can sample the A/D at rates
up to 30 KHz on a 12 MHz 286 machine. Real time events are managed using a rich set of
FORTH software routines which guarantee that time-critical software is executed on
schedule. The maximum time jitter is about 5 µs on our 12 MHz 286 machine. These
timing routines will run on any PC-clone without additional hardware. There are two stop
watch timers (each with a time resolution of less than a 1µs) which can be used to make
performance measurements. The 16 bit stop watch timer has a range of 0 to 56ms, and the
32 bit stop watch timer has a range of 0 to 1 hour. The real time VGA graphic library
includes many types of windows: text, annunicators, bar graphs, scroll graphs, sweep
graphs, arc meters, logic graphs, and x-y scatter graphs. We have developed an extendible
debugging tool called PROSYM. PROSYM provides a simple set of primitives with a high
expressive power that may be used singly or may be combined to construct customized
debugging tools. In addition to providing basic debugging functions, PROSYM supports
an event-action model of debugging. The event-action model provides mechanisms that
allow reasoning about events and allow events to be traced and timed at different levels of
abstraction. PROSYM allows correction via documented patches without disrupting
program structure. PROSYM is non-intrusive and non-invasive. We have evaluated this
development system on the full range of PC platforms from the original PC-XT to the
newest 486 systems. The environment has been used for two years by Engineering
graduate students performing both teaching and research projects.

Biographies
Jonathan W. Valvano was born in Clinton, CT in 1953. He received a B.S.

degree in computer science and engineering, and a M.S. degree in electrical engineering
and computer science from the Massachusetts Institute of Technology in 1977. He received
his Ph.D. in medical engineering from the Harvard/MIT Division of Health Sciences and
Technology in 1981. He is currently an Associate Professor at the University of Texas at
Austin performing research in the fields of perfusion measurements, bioinstrumentation,
and real time systems for embedded control.

Bapi Ahmad was born in Chittagong, Bangladesh in 1953. He received his B.S.
degree in 1980 and his M.S. degree in 1983 in electrical and computer engineering from the
University of Texas at Austin. His special interests are in programming tools for embedded
real time systems.

Jagadish V. Nayak was born in Mangalore, India in 1967. He received his B.S.
degree in 1988 in electronics and telecommunications from the Goa College of Engineering
in India. He received his M.S. degree in 1992 in electrical and computer engineering from
the University of Texas at Austin. His M.S. thesis research included the floating point and
real time graphics libraries described in this paper.

Real Time Data Acquisition and Control Valvano, Ahmad, Nayak

ASEE Austin, TX May 7, 1999 Page 9

