
Jonathan W. Valvano Page 1

valvano@mail.utexas.edu 01/11/08

EE319K Laborartory Manual
Univ of Texas at Austin
Bard, Daniels, Welker

Spring 2008

Table of Contents
LAB 1. A DIGITAL LOCK ..3

LAB 2 ANALYSIS OF MICROCONTROLLER EXECUTION..5

LAB 3. MINIMALLY INTRUSIVE DEBUGGING METHODS ...7

LAB 4. TRAFFIC LIGHT CONTROLLER...15

LAB 5. LCD DEVICE DRIVER ..19

LAB 6. REAL-TIME POSITION MEASUREMENT SYSTEM ..25

LAB 7 DISTRIBUTED DATA ACQUISITION SYSTEM..29

LAB 8. MUSIC GENERATION USING A DIGITAL TO ANALOG CONVERTER ...33

LABS 9 AND 10. TEXAS ROBOTS 1.7 (FOR THE LASTEST INFORMATION CHECK THE WEB SITE)41

HOW TO DEVELOP ASSEMBLY PROGRAMS USING METROWERKS/TECH ARTS BOARD51

HOW TO DEVELOP C PROGRAMS METROWERKS/TECH ARTS 9S12DP512 BOARD55

Page 2 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Jonathan W. Valvano Page 3

valvano@mail.utexas.edu 01/11/08

Lab 1. A Digital Lock
Preparation
 Read Chapter 1 of the book
 Read Section 3.3.2 of the book
 Install and run TExaS, execute Help->GettingStarted, read up to but not including “Developing C software…”
 Download and run the first three lessons at

 http://users.ece.utexas.edu/~valvano/Readme.htm
Purpose
 The general purpose of this laboratory is to familiarize you with the software development steps using the TExaS
simulator. The specific device you will create is a digital lock with two binary switch inputs and one LED output. The LED
output represents the lock, and the operator will toggle the switches in order to unlock the door. Let T be the Boolean
variable representing the lock (0 means LED is off and door is locked, 1 means LED is on and door is unlocked). Let M and
A be Boolean variables representing the state of the two switches (0 means the switch is not pressed, and 1 means the switch
is pressed). The specific function you will implement is

A & M T =
This means the LED will be on if and only if the M switch is pressed and the A switch is not pressed, as shown in Figure 1.1.

Figure 1.1. TExaS IO window showing the door is unlocked.

Description
Part a) Use the TExaS simulator to create three files. Lab1.rtf will contain the assembly source code. Lab1.uc will
contain the microcomputer configuration. Lab1.io will define the external connections, which should be the two switches
and one LED as shown in Figure 1.1. In this class we will use the 9S12DP512 microcomputer, which you can specify using
the Mode->Processor command. You should connect switches to PAD2 (means Port AD0 bit 2) and to PM2 (means Port M
bit 2). You should connect an LED to PT2 (means Port T bit 2). The switches should be labeled M and A, and the LED
should be labeled T. When M switch is “off” or open position, the signal at PM2 will be 0V, which is a logic “0”. For this
situation, your software will consider M to be false. When the M switch is “on” or closed position, the signal at PM2 will be
+5V, which is a logic “1”. In this case, your software will consider M to be true. The A switch, which is connected to PAD2,
will operate in a similar fashion. When your software writes a “1” to PT2, the LED will turn on. Figure 1.1 shows the
condition where the LED is on because A is not pressed and M is pressed.
Part b) You will write assembly code that inputs from PM2 and PAD2, and outputs to PT2. Program 1.1 describes the
software algorithm in C. Notice that this algorithm affects all bits in a port, although only one bit is used. In general, this will
be unacceptable, and we will learn later how to write code that affects one bit at a time. You can copy and paste the address
definitions for ports M, AD0, and T from the port12.rtf file. In particular, you will need to define DDRM DDRT
ATD0DIEN PTM PORTAD0 and PTT.

void main(void){
 ATD0DIEN = 0xFF; // make Port AD0 digital input
 DDRM = 0x00; // make Port M an input, PM2 is M
 DDRT = 0xFF; // make Port T an output, PT2 is T
 while(1){
 PTT = (~PORTAD0)&PTM; // LED on iff PAD2=0 and PM2=1
 }
}
Program 1.1. The first C program to illustrate Lab 1.

Page 4 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

The structure of assembly programs in this class is shown as Program 1.2. The opening comments include: file name, overall
objectives, hardware connections, specific functions, author name, and date. The equ pseudo-op is used to define port
addresses. Global variables are declared in RAM, and the main program is placed in EEPROM. The 16-bit contents at $FFFE
and $FFFF define where the computer will begin execution after a reset vector. This template, shown in Program 1.2, can be
found in most example programs for the 9S12C32 or 9S12DP512.

;****************** Lab1.RTF ***************
; Program written by: Your Name
; Date Created: 1/22/2008
; Last Modified: 1/22/2008
; Section 1-2pm TA: Nachiket Kharalkar
; Lab number: 1
; Brief description of the program
; The overall objective of this system is a digital lock
; Hardware connections
; PM2 is switch input M
; PAD2 is switch input A
; PT2 is LED output T (on means unlocked)
; The specific operation of this system
; unlock if A is not pressed and M is pressed
;I/O port definitions on the 9S12DP512
ATD0DIEN equ $008D ; ATD Input Enable Mask Register
PTM equ $0250 ; Port M I/O Register
PORTAD0 equ $008F ; Port AD I/O Register
PTT equ $0240 ; Port T I/O Register
DDRM equ $0252 ; Port M Data Direction Register
DDRT equ $0242 ; Port T Data Direction Register
 org $0800 ; RAM
 ; Global variables (none required for this lab)
 org $4000 ; flash EEPROM
main
;Software performed once at the beginning
loop
;Software repeated over and over
 bra loop
 org $FFFE
 fdb main ;Starting address
Program 1.2. Assembly language template.

Part c) During the demonstration, you will be asked to run your program to verify proper operation. You should be able to
single step your program and explain what your program is doing and why. You need to know how to set and clear
breakpoints. You will be asked to look up the meaning of commands like Mode->FollowPC using the on-line help. Be
prepared to make changes to Lab1.io, such as changing the names and colors of the switches and LEDs.

Jonathan W. Valvano Page 5

valvano@mail.utexas.edu 01/11/08

Lab 2 Analysis of Microcontroller Execution
Preparation
 Read Chapter 2 as a review of EE306
 Read Sections 3.1, 3.2, 3.3, and 4.6
 Get the CPU12 data book from your instructor or download the electronic version

 http://users.ece.utexas.edu/~valvano/EE319K/S12CPUV2.pdf
In preparation for this lab, you should look up these terms in the glossary: accumulator, address bus, arithmetic logic unit
(ALU), bus, bus interface unit (BIU), control bus, control unit (CU), data bus, effective address register (EAR), memory-
mapped I/O, opcode, operand, program counter (PC), and registers.

Purpose
The educational objectives of this lab are to

1) learn the difference between source code and object code
2) understand how the machine uses the IR and EAR while executing
3) know immediate, extended, indexed and PC-relative addressing
4) study how the computer executes software

In order to get a good grade in Lab 2, we suggest you use this example to practice determining bus cycles. You do not have to
do this part, it will not be turned in, and it will not be graded. Start TExaS, and create a new Microcomputer file.

Step 1. Execute the Mode->Processor… command and select the MC9S12DP512. Save this document as Lab2.uc.

Step 2. Download the file Lab2.rtf from the class website, shown below. Assemble this program by executing the
Assemble->Assemble command.
$3800 org $3800
$3800 Sum rmb 2 ;16-bit signed result
$0003 SIZE equ 3
$4000 org $4000
$4000 CE401A main ldx #Array ;pointer to array
$4003 CD0000 ldy #0 ;Sum=0
$4006 7D3800 sty Sum
$4009 A630 loop ldaa 1,x+ ;get data from array
$400B B704 sex a,d ;promote to 16-bits
$400D F33800 addd Sum
$4010 7C3800 std Sum ;Sum=Sum+data
$4013 8E401D cpx #Array+SIZE
$4016 26F1 bne loop ;done?
$4018 183E done stop
$401A F414D8 Array fcb -12,20,-40 ;array of data
$FFFE org $FFFE ;reset vector
$FFFE 4000 fdb main
Assembly program used in Lab 2 part a).

Step 3. For each op code, first determine the addressing mode it uses. The sex a,d is inherent mode, because it operates on
the registers without accessing memory. org rmb equ fcb and fdb are pseudo ops and thus do not have addressing modes.
The instructions that access Sum will use extended addressing, rather than direct addressing, because the address of Sum
($3800) is outside the $0000 to $00FF range of direct addressing.

Step 4. Execute this program by hand (using paper and pencil) up to but not including the stop instruction. For each
instruction show the memory cycles generated and the values of any registers that change. Show the simplified cycles as
described in the book. This program will execute 22 instructions, resulting in RegD being the 16-bit result -32. You do not
need to show free cycles or changes to the CCR, but do include changes to the other registers including the IR and EAR. The
IR is set after reading the op code, and the EAR is set before reading/writing memory with direct, extended, or indexed
addressing modes. Some instructions, like leax leay leas, use indexed addressing mode and set the EAR, but do not
access memory. Other than these exceptions, the EAR holds the address when reading data from memory or writing data to
memory. E.g., the first instruction is

Page 6 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Instruction: ldx #$401F
R/W Addr Data Changes
R $4000 $CE PC=$4001, IR=$CE
R $4001 $40 PC=$4002
R $4002 $1A PC=$4003, X=$401A

The second instruction is
Instruction: ldy #0
R/W Addr Data Changes
R $4003 $CD PC=$4004, IR=$CD
R $4004 $00 PC=$4005
R $4005 $00 PC=$4006, Y=$0000

The third instruction is
Instruction: sty Sum
R/W Addr Data Changes
R $4006 $7D PC=$4007, IR=$7D
R $4007 $38 PC=$4008
R $4008 $00 PC=$4009, EAR=$3800
W $3800 $00
W $3801 $00

Step 5. Activate the FollowPC CycleView InstructionView and LogRecord modes using the commands in the Mode menu.
Single step the program using TExaS up to an including the stop instruction. Verify the answers you gave for Step 4.

To do) Come to lab during your regularly scheduled lab time. At that time, you will be given an assembly listing and some
blank pages containing boxes like the example at

http://users.ece.utexas.edu/~valvano/EE319K/Lab2InstructionSheet.pdf
You will be asked to determine the bus cycles for this program, like step 4 above. This program will be similar to the practice
program above, but shorter in length. For each instruction you may or may not need all 5 entries. Your Lab2 grade will be
based entirely on your performance on this Lab 2 quiz. For example, see

http://users.ece.utexas.edu/~valvano/EE319K/Lab2a.pdf
You will have access to some pages of the CPU12 manual (like the following), but not have access to the entire CPU12
manual, and you will not have access to TExaS itself.

SUBD Subtract Double Accumulator SUBD
Operation: (A : B) – (M : M + 1) ⇒ A : B
Description: Subtracts the content of memory location M : M + 1 from the content of

double accumulator D and places the result in D.

Source Form Address Mode Object Code HCS12 Access Detail
SUBD #opr16i IMM 83 jj kk PO
SUBD opr8a DIR 93 dd RPf
SUBD opr16a EXT B3 hh ll RPO
SUBD oprx0_xysp IDX A3 xb RPf
SUBD oprx9,xyssp IDX1 A3 xb ff RPO
SUBD oprx16,xysp IDX2 A3 xb ee ff fRPP

Jonathan W. Valvano Page 7

valvano@mail.utexas.edu 01/11/08

Lab 3. Minimally Intrusive Debugging Methods
Preparation
 Read Chapter 4 as a review of EE306
 Read Sections 3.4, 3.5, 4.3, 6.2, 6.3, 7.1, 7.3, 7.4, 7.5, and 7.6
This lab has these major objectives:
 • Interfacing LEDs and switches to the microcontroller;
 • Simple use of a for loop for creating time delays;
 • Development of debugging tools appropriate for the real 9S12.

 The basic approach to this lab will be to first develop and debug your system using the simulator. During this phase
of the project you will run with a short time delay. After the software is debugged, you will build your hardware and run your
software on the real 9S12. During this phase of the project you will run with time delays long enough so you will be able to
see the LED flash (slower than 8 Hz).
 There is a free design tool from ExpressPCB that we will be using in EE319K, EE345L and EE345M. To download
this tool go to www.expresspcb.com. When installed, there will be two applications

ExpressSCH will be used to draw electrical circuits, e.g., Lab3.sch, Lab4.sch
ExpressPCB will be used to design PCB boards (not used until EE345L)

System Requirements
 You will first design a system, and then add debugging instruments to prove the system is functioning properly. The
system has one input switch and one output LED. The basic function of the system is to respond to the input switch, causing
certain output patterns on the LED. Figure 3.1 shows that the switch is in positive logic. This means the PT3 signal will be 0
(low, 0V) if the switch is not pressed, and the PT3 signal will be 1 (high, +5V) if the switch is pressed. Overall functionality
of this system is described in the following rules.
 The system starts with the LED off (make PT2 =0).
 The system will return to the off state if the switch is not pressed (PT3 is 0).
 If the switch is pressed (PT3 is 1), then the LED will flash on and off at about 4 Hz (any value from 1 to 8 Hz is ok).

One possible circuit diagram for the LED output and switch input is shown in Figure 3.1. You will attach this switch and
LED to your protoboard (the white piece with all the holes), and interface them to your 9S12. During the first phase of this
lab, you will simulate these hardware circuits in TExaS using positive logic mode for the switch and LED.

Figure 3.1. Hardware circuit diagram.

When visualizing software running in real-time on an actual microcomputer, it is important use minimally intrusive
debugging tools. The objective of this lab is to develop debugging methods that do not depend on the simulator. During the
first phase of this lab, you will develop and test your program and debugging instruments on the TExaS simulator. In
particular, you will write debugging instruments to record input and output information as your system runs in real time. This
software dump should store data into an array while it is running, and the information will be viewed at a later time. Software
dumps are an effective technique when debugging software on an actual microcomputer. During the second phase of this lab,
you will run your system on the real 9S12 with and without your debugging instruments.

Page 8 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Procedure
You will use the TExaS simulator to develop and test your debugging instructions, and then you will copy and paste your
solutions into a Metrowerks program for running on the real 9S12.

Part a) Write a main program that implements the input/output system. The basic steps for the main program are as follows

 Initialize the stack pointer
 Enable interrupts for the Metrowerks debugger, cli
 Set the direction register so PT3 is an input and PT2 is an output
 Set PT2 so the LED is off
loop delay about 125ms (any delay from 60 to 500 ms is OK)
 read the switch and go to flash if the switch is pressed
 Set PT2 so the LED is off
wait read the switch and go to wait if the switch is not pressed
flash toggle the LED (if on turn it off, if off turn it on)
 go to loop

 DDRT &= ~0x08; // PT3 input
 DDRT |= 0x04; // PT2 output
 PTT &= ~0x04; // PT2 off
 while(1){
 Delay(); // you write this
 if((PTT&0x08)==0){
 PTT &= ~0x04; // PT2 off
 while((PTT&0x08)==0){};
 }
 PTT = PTT^0x04; // toggle
 }

main

Initialize stack pointer

Set direction registers

PT2 = 0 add Debug_Capture

Delay about 125ms

PT3pressed

PT2 = 0 add Debug_Capture

not pressed

PT2 = ~PT2 add Debug_Capture

PT3pressed not pressed

loop

flash

wait

To implement the 125ms delay
 Set a 16-bit register to a large number, then count it down to zero

Add multiple nop instructions so the loop takes at least 16 cycles to complete
E.g., 62500(loops)*16(cycles/loop)*125(ns/cycle)=125ms (in RUN mode)

The 9S12 executes 3 times faster in LOAD mode (24 MHz) than RUN mode (8 MHz). We do not care whether your program
delays 125ms in RUN mode or in LOAD mode, as long as you understand that there is a difference in execution speed.

Part b) Write two debugging subroutines that implement a dump instrument. This is called functional debugging because
you are capturing input/output data of the system, without information specifying when the input/output was collected. The
first subroutine (Debug_Init) initializes your debugging system. The initialization should initialize a 100-byte array (start

Jonathan W. Valvano Page 9

valvano@mail.utexas.edu 01/11/08

it at $3880), initializing pointers and/or counters as needed. The second subroutine (Debug_Capture) that saves one data-
point (PT3 input data, and PT2 output data) in the array. Since there are only two bits to save, pack the information into one
8-bit value for storage and ease of visualization. For example, if

Input (PT3) Output (PT2) save data
0 0 0000,00002, or $00
0 1 0000,00012, or $01
1 0 0001,00002, or $10
1 1 0001,00012, or $11

In this way, you will be able to visualize the entire array in an efficient manner. Place a call to Debug_Init at the
beginning of the system, and a call to Debug_Capture just after each time you output to PTT (there will be 3 or 4 places
where your software writes to PTT). Within TExaS you can observe the debugging array using a Stack window. After you
have debugged your code make a printout of the instrumented software system.
The basic steps involved in designing the data structures for this debugging instrument are as follows
 Allocate a 100-byte buffer starting at address $3880
 Allocate a 16-bit pointer, which will point to the place to save the next measurement
The basic steps involved in designing Debug_Init are as follows
 Set all entries of the 100-byte buffer to $FF (meaning no data yet saved)
 Initialize the 16-bit pointer to the beginning of the buffer
The basic steps involved in designing Debug_Capture are as follows
 Return immediately if the buffer is full (pointer past the end of the buffer)
 Read PTT data = PTT
 Mask capturing just bits 3,2 data = ((data&$08)<<1)+((data&$04)>>2)
 Dump debugging information into buffer (*pt) = data
 Increment pointer to next address pt = pt+1
Both routines should save and restore registers that it modifies (except CCR), so that the original program is not affected by
the execution of the debugging instruments. The temporary variable data may be implemented in a register. However, the
100-byte buffer and the 16-bit pointer, pt, should be permanently allocated in global RAM.

Part c) By counting cycles in the listing file, estimate the execution time of the Debug_Capture subroutine. Assuming the
actual E clock speed, convert the number of cycles to time. This time will be a quantitative measure of the intrusiveness of
your debugging instrument. Either hand-write it on your printout or type it in as comments to your program.

Part d) Engineers must be able to read datasheets during the design, implementation and debugging phases of their projects.
During the design phase, datasheets allow us to evaluate alternatives, selecting devices that balance cost, package size,
power, and performance. For example, we could have used other IC chips like the 7405, 74LS05, or 74HC05 to interface the
LED to the 9S12. In particular, we chose the 7406 because it has a large output current (IOL = 40 mA), 6 drivers, and is very
inexpensive (53¢). During the implementation phase, the datasheet helps us identify which pins are which. During the
debugging phase, the datasheet specifies input/output parameters which we can test. Download the 7406, LED, and switch
datasheets from the web
 http://users.ece.utexas.edu/~valvano/EE319K/SN7406.pdf
 http://users.ece.utexas.edu/~valvano/EE319K/LED_red.pdf
 http://users.ece.utexas.edu/~valvano/EE319K/B3F-switch.pdf
and find in the datasheet for the 7406 the two pictures as shown in Figure 3.2. Next, hold your actual 7406 chip and identify
the locations of pins 1-14. Find in the datasheet the specification that says the output low voltage (VOL) will be 0.4V when the
output low current (IOL) is 16 mA (this is close to the operating point we will be using for the LED interface).

Page 10 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Figure 3.2. Connection diagram and physical package diagram for the 7406.

Similarly, hold an LED and identify which pin is the anode and which is the cathode. Find on the switch datasheet the two
pictures of the B3F-1052 switch as shown in Figure 3.3. Next, hold an actual switch and identify the locations of pins 1-4.

Figure 3.3. Connection diagram and physical package diagram for the B3F-1052 switch.

To build circuits, we'll use a solderless breadboard, also referred as a protoboard. The holes in the protoboard are
internally connected in a systematic manner, as shown in Figure 3.4. The long columns of holes along the right and left of the
protoboard are electrically connected. Some protoboards like the one in Figure 3.4 have four long columns (two on each
side), while others have just two long columns (one on each side). We will connect one column to +5V and another column
to ground, and we refer to them as power buses. In the middle of the protoboard, you'll find two groups of holes placed in a
0.1 inch grid. Each adjacent row of five pins is electrically connected. We usually insert components into these holes. IC
chips are placed on the protoboard, such that the two rows of pins strattle the center valley. The 9S12 module also is inserted
into the protoboard in such a way that the two rows of pins are across the center. The piece of paper from the kit or from
Figure 3.7 should be trimmed and placed between the 9S12 and the protoboard, making it easy to identify the 9S12 pins. For
example, assume we to connect 9S12 PT2 output to the 7406 input pin 1. First, cut a 24 guage solid wire about a 0.5 in longer
than the distance between PT2 and pin 1 of the 7406. Next, strip about 0.25 in off each end. Place one end of the wire in one
of the four remainding holes of the PT2 row and the other end in one of the four remainding of the 7406 pin 1.

Jonathan W. Valvano Page 11

valvano@mail.utexas.edu 01/11/08

Place 9S12 over
the center valley.

The five pins in
each row are
connected

The pins on the
outer columns
are connected

The pins on the
outer columns
are connected

The five pins in
each row are
connected Place paper

between 9S12
and protoboard.

Connect +5V and
ground from 9S12
to power buses.

Figure 3.4. The dotted lines in this figure illustrate the pattern of which pins are internally connected.

Part e) After the software has been debugged on the simulator, you will implement it on the real board. Lab3.sch is a starter
file you should use to draw your hardware circuit diagram (like Figure 3.1). The first step is to interface a push button switch.
You can implement positive logic or negative logic switches, as shown in Figure 3.5. Do not place or remove wires on the
protoboard while the power is on.

+5V
10kΩ

Input
Pinpressed 0V low

released 5V high

+5V

10kΩ
Input
Pin

pressed
0V lowreleased

5V high

Figure 3.5. Switch interface.

Before connecting the switch to the microcomputer, please take these measurements using your digital multimeter. The input
voltage (VPT3) is the signal that will eventually be connected to PT3. If you implement a positive logic switch interface, the
resistor current will be VPT3/R2. If you implement a negative logic switch interface, the resistor current will be (5-VPT3)/R2.
The voltages should be near +5 or near 0V and the currents should be less than 1 mA.

Parameter Value Units Conditions
Resistance of the
 10k resistor, R2

ohms

with power off and
 disconnected from circuit

Input Voltage, VPT3

volts

Powered, but
with switch not pressed

Resistor current

mA

Powered, but switch not pressed
Negative logic: (5- VPT3)/R2
Positive logic: VPT3/R2

Input Voltage, VPT3

volts

Powered and
with switch pressed

Resistor current

mA

Powered and switch pressed
Negative logic: (5- VPT3)/R2
Positive logic: VPT3/R2

Table 3.1. Switch measurements.

Page 12 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Next you can connect the input voltage to PT3 and use the debugger to observe the input pin to verify the proper operation of
the switch interface.
 The next step is to build the LED output circuit. LEDs emit light when an electric current passes through them, as
shown in Figure 3.6. LEDs have polarity, meaning current must pass from anode to cathode to activate. The anode is labeled
a or + , and cathode is labeled k or -. The cathode is the short lead and there may be a slight flat spot on the body of round
LEDs. Thus, the anode is the longer lead. LEDs are not usually damaged by heat when soldering. Figure 6.4 in the textbook
shows an interface circuit that can be used in this lab. Look up the pin assignments in the 7406 data sheet. Be sure to connect
+5V power to pin 14 and ground to pin 7. The capacitor from +5V to ground filters the power line.

Photo: Circuit symbol:
Figure 3.6. LEDs.

 You can use the debugger to set the direction register for PT2 to output. Then, you can set the PT2 high and low, and
measure the three voltages (input to 7406, output from 7406 which is the LED cathode voltage, and the LED anode voltage).
When active, the LED voltage should be about 2 V, and the LED current should be about 10 mA.

Parameter Value Units Conditions
Resistance of the
 220Ω resistor, R1

ohms

with power off and
 disconnected from circuit

9S12 Output, VPT2
 input to 7406

volts

with PT2 =0

7406 Output, Vk-
 LED k-

volts

with PT2 =0

LED a+, Va+
 Bottom side of R1

volts

with PT2 =0

LED voltage

volts

calculated as Va+ - Vk-

LED current

mA

calculated as (5- Va+)/R1

9S12 Output, VPT2
 input to 7406

volts

with PT2 =1

7406 Output, Vk-
 LED k-

volts

with PT2 =1

LED a+, Va+
 Bottom side of R1

volts

with PT2 =1

LED voltage

volts

calculated as Va+ - Vk-

LED current

mA

calculated as (5- Va+)/R1

Table 3.2. LED measurements.

a + k - Anode

Cathode

Jonathan W. Valvano Page 13

valvano@mail.utexas.edu 01/11/08

Part f) Debug your combined hardware/software system on the actual 9S12 board.

Part g) Run your debugging instrument capturing the sequence of input/outputs as you first touch, then release the switch.

Warning: NEVER INSERT/REMOVE WIRES/CHIPS WHEN THE POWER IS ON.
Deliverables
 1) Circuit diagram (with your name and date)
 2) Switch measurements (Table 3.1)
 3) LED measurements (Table 3.2)
 4) Assembly listing of your final program
 5) Estimation of the execution time of your debugging instrument Debug_Capture (part c)
 5) Results of the debugging instrument (part g)

9S12DP512

25

50

26

1

PAD11

PA3

PA0

PA6
PA5
PA4

PA1

PB7
PB6
PB5
PB4
PB3

PB0

PB2

PA7

PA2

PB1

PAD10
PAD9
PAD8

PE2
PE4

PE1
PE3

PJ1

PAD14

PK4

PK1
PK0
PJ0
PJ7
PJ6
PM7
PM6
PM5

PK3

PK5
PK7
PE7
Gnd
 +5

PK2

PAD15

PM3
PM4

PAD13
PAD12

PM2

PM0
PM1

H2
9S12DP512

25

50

26

1

PAD3

PS1

PT5

PS5
PS6
PS7

PT6

PT4
PT3
PT2
PT1
PT0

PP5

PP7

PS4

PT7

PP6

PAD2
PAD1
PAD0

PP4
PP3

PP1
PP2

PP0

PAD6

PE0

PH0
PH1
PH2
PH3
PH4
PH5
PH6
PH7

Reset*

PE1
+5
PS0
Gnd
Gnd

PE7

PAD7

PE4
PS2

PAD5
PAD4

PS3

VRH
VRL

H1
9S12DP512

25

50

26

1

AN03

TxD0

PT5

MOSI
Sck
SS*

PT6

PT4
PT3
PT2
PT1
PT0

PP5

PP7

MISO

PT7

PP6

AN02
AN01
AN00

PP4
PP3

PP1
PP2

PP0

AN06

XIRQ*

PH0
PH1
PH2
PH3
PH4
PH5
PH6
PH7

Reset*

IRQ*
+5
RxD0
Gnd
Gnd

PE7

AN07

Eclk
RxD1

AN05
AN04

TxD1

VRH
VRL

H1
9S12DP512

25

50

26

1

AN11

AD11

AD8

AD14
AD13
AD12

AD9

AD7
AD6
AD5
AD4
AD3

AD0

AD2

AD15

AD10

AD1

AN10
AN09
AN08

R/W
Eclk

IRQ*
LSTRB*

PJ1

AN14

XA18

XA15
XA14
PJ0
SCL
SDA
PM7
PM6
PM5

XA17

XA19
ECS*

XCLKS*
Gnd
 +5

XA16

AN15

PM3
PM4

AN13
AN12

PM2

RxCAN
TxCAN

H2
DM912C32

20

40

21

1

CANL CANH

PE1

PT5
PT4
PT3
PT2
PT1
PT0
PM0
PM1

PT7

PE0
+5
Reset
Gnd
Vin

PT6

AN0

AN3

RX
DTR
Gnd

AN2

AN4
AN5
AN6
AN7
PM5

PM2

PM4

TX

AN1

PM3

EE319K EE345L

Figure 3.7. Cut and trim a label to place between the 9S12 and the protoboard.

Precautions to avoid damaging your system
1) Touch a grounded object before handling CMOS electronics. Try not to touch any exposed wires.

2) Do not plug or unplug the 9S12 board into a protoboard while the system is powered.

3) Never remove the 9S12C32 CPU module from the docking module. THE PINS ON THE CPU MODULE ARE VERY
FRAGILE. On the other hand, the male pins on the docking module have been very robust as long as you limit the twisting
forces. To remove the docking module from the protoboard pull straight up (or at least pull up a little at a time on each end.)

4) Use and store the system with the docking module plugged into a protoboard (this will reduce the chances of contacting
the metal pins tied directly to the 6812 with either your fingers or stray electrical pulses).

5) Do not use the 9S12 with any external power sources, other than the supplied wall-wart. In particular, avoid connecting
signals to the 9S12 that are not within the 0 to +5V range. In particular, voltages less than 0V or greater than +5V will
damage the ADC.

6) Do not connect any wires to the 9S12C32 pins labeled Vin, DTR, TX, or RX. These pins contain voltages outside the safe
0 to +5V range. Also do not connect to the Reset pin.

Page 14 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

This is what the debugging screens look like after program started but the switch is not yet pushed

This is what the TExaS debugging screen looks like after the switch is pushed for about 4 seconds

This is approximately what the debugging screens look like after the switch is released

Jonathan W. Valvano Page 15

valvano@mail.utexas.edu 01/11/08

Lab 4. Traffic Light Controller
Preparation
 Read Sections 3.5, 5.1, and 5.2 in the textbook
 See http://users.ece.utexas.edu/~valvano/EE319K/LED_yellow.pdf
 See http://users.ece.utexas.edu/~valvano/EE319K/LED_green.pdf
This lab has these major objectives:
 • The usage of linked list data structures;
 • Create a segmented software system;
 • Real-time synchronization by designing an input-directed traffic light controller.
In preparation for this assignment, review finite state machines, linked lists, and memory allocation. You should also run and
analyze the linked list controllers found in example files moore.rtf and mealy.rtf.
 The basic approach to this lab will be to first develop and debug your system using the simulator. During this phase of
the project you will run with a fast TCNT clock (TSCR2=0). After the software is debugged, you will interface actual lights
and switches to the 9S12, and run your software on the real 9S12. During this phase of the project you will run with a slow
TCNT clock (TSCR2=$07). As you have experienced, the simulator requires more actual time to simulate 1 cycle of the
microcomputer. On the other hand, the correct simulation time is maintained in the TCNT register, which is incremented
every cycle of simulation time. The simulator speed depends on the amount of information it needs to update into the
windows. Unfortunately, even with the least amount of window updates, it would take a long for the simulator to process
the typical 3 minutes it might take for a “real” car to pass through a “real” traffic intersection. Consequently, the cars in this
traffic intersection travel much faster than “real” cars. In other words, you are encouraged to adjust the time delays so that
the operation of your machine is convenient for you to debug and for the TA to observe during demonstration.

Description
 You will create a segmented software system putting global variables into RAM, local variables into RAM, constants
and fixed data structures into EEPROM, and program object code into EEPROM. Most microcontrollers have a rich set of
timer functions. For this lab, you will the ability to wait a prescribed amount of time. This initialization function will enable
the 16-bit TCNT timer. The value in TSCR2 determines the rate at which TCNT will increment.
Timer_Init
 movb #$80,TSCR1 ; enable TCNT
 movb #$07,TSCR2 ; TCNT counts 128 times slower than the E clock
 rts

This function will wait a fixed number of cycles using the TCNT timer.
;************ Timer_Wait***************
; inputs: RegD is the number of cycles to wait
; outputs: none
; errors: RegD must be less or equal to 32767
Timer_Wait
 addd TCNT ;TCNT value at the end of the wait
wait cpd TCNT ;RegD-TCNT<0 when RegD<Tcnt
 bpl wait
 rts

This function will wait a fixed number of 0.01sec intervals using the previous function.
;************ Timer_Wait10ms***************
; time delay
; inputs: RegY is the number of 10ms to wait
; outputs: none
; errors: RegY=0 will wait 655.36 sec
Timer_Wait10ms
 ldd #CYCLES10MS ;this constant depends on speed of your microcontroller
 bsr Timer_Wait
 dbne Y,Timer_Wait10ms
 rts

Page 16 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

You are asked to modify Timer_Wait10ms so that it reads the input switches during the fixed wait, in such a way that it
remembers if any of the three input switches becomes true during the wait. Essentially, you should read the 3-bit input port
within the wait loop and or-together the data. The finite state machine will use this method to read the 3-bit input. This
method allows your system to respond to a walk button that may go from false to true then to false during a wait.
 In general, cycle-counting (simple for loops) has the problem of conditional branches and data-dependent execution
times. If an interrupt were to occur during a cycle counting delay, then the delay would be inaccurate using the cycle-
counting method. In the above method, however, the timing will be very accurate, even if an interrupt were to occur while the
microcomputer was waiting. In more sophisticated systems, other timer modes provide even more flexible mechanisms for
microcomputer synchronization. These techniques will be presented in Chapter 11. A linked list solution may not run the
fastest, or occupy the fewest memory bytes, but it is a structured technique that is easy to understand, easy to implement, easy
to debug, and easy to upgrade.
 Consider a typical 4-corner intersection as shown in Figure 4.1. There are two one-way streets are labeled South (cars
travel North) and West (cars travel East). There are three inputs to your 9S12, two are car sensors, and one is a walk button.
The South sensor will be true (1) if one or more cars are near the South intersection. Similarly, the West sensor will be true
(1) if one or more cars are near the West intersection. The Walk sensor will be true (1) if a pedestrian wishes to cross in any
direction. There are 8 outputs from your microcomputer that control the two Red/Yellow/Green traffic lights, and the two
walk/don’t lights. The simulator allows you to attach binary switches to simulate the three inputs and LED lights to simulate
the eight outputs.

R
Y
G

West
Sensor

West
Road

South Road

RYG

South
Sensor

Walk
Sensor

Walk

Don't

Figure 4.1. Traffic Light Intersection.

 Traffic should not be allowed to crash. I.e., there should not be a green or yellow on South at the same time there is a
green or yellow on West. You should exercise common sense when assigning the length of time that the traffic light will
spend in each state, so that the simulated system changes at a speed convenient for the TA (stuff changes fast enough so the
TA doesn’t get bored, but not too fast that the TA can’t see what is happening). Cars should not be allowed to hit the
pedestrians. The walk sequence should be realistic (walk, flashing don’t, continuous don’t). Your system should consider
both the average and worst case waiting time. You may assume the two car sensors remain active for as long as service is
required. On the other hand, the walk button may be pushed and released, and the system must remember the walk has been
requested.

Part a) Build an I/O system in TExaS with the appropriate names and colors on the lights and switches. Think about which
ports you will be using in part d), so that you simulate the exact system you will eventually plan to build.

Part b) Design a finite state machine that implements a good traffic light system. Include a graphical picture of your finite
state machine showing the various states, inputs, outputs, wait times and transitions. Remember the wait function will return
input data collected while it is waiting.

Part c) Write the assembly code that implements the traffic light control system. There is no single, “best” way to implement
your traffic light. However, your scheme must be segmented into RAM/EEPROM and you must use a linked-list data
structure. There should be a 1-1 mapping from the FSM states and the linked list elements. A “good” solution has about 10 to
20 states in the finite state machine, and provides for input dependence. Try not to focus on the civil engineering issues.
Rather, build a quality computer engineering solution that is easy to understand and easy to change. Do something
reasonable, and have 10-20 states. A good solution has

Jonathan W. Valvano Page 17

valvano@mail.utexas.edu 01/11/08

 1) 1-1 mapping between state graph and data structure
 2) no conditional branches in program
 3) the state graph defines exactly what it does in a clear and unambiguous fashion
 4) the format of each state is the same
 5) good names and labels.

 Typically in real applications using an embedded system, we put the executable instructions and the finite state machine
linked list data structure into the nonvolatile memory (flash EEPROM). A good implementation will allow minor changes to
the finite machine (adding states, modifying times, removing states, moving transition arrows, changing the initial state)
simply by changing the linked list controller, without changing the executable instructions. Making changes to executable
code requires you to debug/verify the system again. If there is a 1-1 mapping from FSM to linked-list data structure, then if
we just change the state graph and follow the 1-1 mapping, we can be confident our new system still operates properly.
Obviously, if we add another input sensor or output light, it may be necessary to update the executable part of the software
and re-assemble. During the debugging phase with the TExaS simulator, you can run with a fast TCNT clock (TSCR2=$00).

Part d) After the software has been debugged on the simulator, you will implement it on the real board. EE319K.sch is a
starter file you should use to draw your hardware circuit diagram. The first step is to interface three push button switches for
the sensors. You can implement positive logic or negative logic switches, as shown in Figure 3.2. Do not place or remove
wires on the protoboard while the power is on. Build the switch circuits and test the voltages using a digital voltmeter. You
can also use the debugger to observe the input pin to verify the proper operation of the interface.
 The next step is to build six LED output circuits. You can use the two LEDs on the docking module (PT1, PT0) in
addition to the 6 external LEDs you will build on your protoboard. Look up the pin assignments in the 7406 data sheet. Be
sure to connect +5V power to pin 14 and ground to pin 7. You can use the debugger to set the direction register to output.
Then, you can set the output high and low, and measure the three voltages (input to 7406, output from 7406 which is the LED
cathode voltage, and the LED anode voltage).

Part e) Debug your combined hardware/software system on the actual 9S12 board. When using the real 9S12, you should run
with a slow TCNT clock (TSCR2=$07).

During checkout, you will be asked to show both the simulated and actual 9S12 systems to the TA. An interesting question
that may be asked during checkout is how you could experimentally prove your system works. In other words, what data
should be collected and how would you collect it?

Deliverables
 1) Circuit diagram (with your name and date)
 2) Drawing of the finte state machine
 3) Assembly listing of your final program

Page 18 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

9S12DP512 I/O Pins
Chip TechArts TExaS V1.32 Simulation
PAD15-PAD8 H2 Not simulated
PAD7-PAD0 H1 Analog input or Digital input
PA7-PA0 H2 Digital I/O, no external data bus
PB7-PB0 H2 Digital I/O, no external data bus
PE7-PE0 H1/H2 no PE5,PE6 Digital I/O, no IRQ, no XIRQ, no external data bus
PH7-PH0 H1 Digital I/O, Key wakeup
PJ7-PJ6 H2 Digital I/O, Key wakeup, no I2C, no CAN
PJ1-PJ0 H2 Digital I/O, Key wakeup
PM7-PM0 H2 Digital I/O, no CAN, no SPI
PP7-PP0 H1 Digital I/O, Key wakeup, no SPI, no PWM
PS7-PS0 H1 Digital I/O, SCI0, no SCI1, no SPI
PT7-PT0 H1 Digital I/O, input capture, output compare

9S12DP512 Memory Map
$0000 to $03FF I/O ports
$0400 to $07FF 1k EEPROM
$0800 to $3FFF 14k RAM
$4000 to $FFFF 48K Flash EEPROM
Paged memory allows access to 512K EEPROM

Jonathan W. Valvano Page 19

valvano@mail.utexas.edu 01/11/08

Lab 5. LCD Device Driver
Preparation
 Read Sections 2.11, 4.7, 6.5, and 8.1
 Download the data sheets for the LCD display

 http://users.ece.utexas.edu/~valvano/EE345L/DataSheets/OptrexLCD.pdf
 http://users.ece.utexas.edu/~valvano/EE345L/DataSheets/LCD.pdf
 http://users.ece.utexas.edu/~valvano/EE345L/DataSheets/hd44780.pdf
This lab has these major objectives:
 • Interface an LCD interface used to display information on the embedded system;
 • Development of a device driver;
 • Allocation of local variables on the stack.
You should also observe the HD44780.RTF program included with the TExaS example files.

Purpose
 The basic approach to this lab will be to first develop and debug your system using the simulator. During this phase of
the project you will use the TExaS debugger to observe your software operation. After the software is debugged, you will run
your software on the real 9S12. Figure 5.1 shows one possible connection between the 9S12DP512 and the LCD. This
configuration employs 4-bit data mode, which requires fewer I/O pins but necessitates a more complex communication
protocol. The examples in the book and in HD44780.RTF employ 8-bit mode.
Many microcontrollers have a limited number of pins, therefore you will interface
the LCD using 4-bit data mode, which requires only 6 output pins of the 9S12. This
lab will use “blind cycle” synchronization, which means after the software issues
an output command to the LCD, it will blindly wait a fixed amount of time for that
command to complete. For 16-pin LCD devices pins 15 and 16 should be left not
connected.
 The LCD is physically configured as 16 characters in one row, but internally
the device is configured as 2 rows of 8. The left-most 8 characters exist at
addresses $00 $01 $02 $03 $04 $05 $06 and $07. The right-mode 8 characters exist
at addresses $40 $41 $42 $43 $44 $45 $46 $47. In particular, the ASCII character
at LCD address $07 is adjacent to the character at LCD address $40.
 The objective of this lab is to develop a device driver for the LCD
display. A device driver is a set of functions that facilitate the usage of an I/O port.
In particular, there are three components of a device driver. First component is the
description of the driver. If the software were being in C, then this description
would have been the function prototypes for the public functions, which would
have been placed in the header file of the driver, e.g., the LCD.H. Since this driver
will be developed in assembly, your descriptions are placed in the comments before
each subroutine. It is during the design phase of a project that this information is
specified. In this lab, you are required to develop and test these seven public
functions (notice that public functions include LCD_ in their names)

 Figure 5.1. One possible circuit diagram that interfaces the LCD to the 9S12DP512.

;---------------------LCD_Open---------------------
; initialize the LCD display, called once at beginning
; Input: none
; Output: none
; Registers modified: CCR

;---------------------LCD_Clear---------------------
; clear the LCD display, send cursor to home
; Input: none
; Outputs: none
; Registers modified: CCR

Page 20 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

;---------------------LCD_OutChar---------------------
; sends one ASCII to the LCD display
; Input: RegA (call by value) letter is ASCII code
; Outputs: none
; Registers modified: CCR

;-----------------------LCD_GoTo-----------------------
; Move cursor (set display address)
; Input: RegA is display address is 0 to 7, or $40 to $47
; Output: none
; errors: it will check for legal address

; ---------------------LCD_OutString-------------
; Output character string to LCD display, terminated by a NUL(0)
; Inputs: RegX (call by reference) points to a string of ASCII characters
; Outputs: none
; Registers modified: CCR

;-----------------------LCD_OutDec-----------------------
; Output a 16-bit number in unsigned decimal format
; Input: RegD (call by value) 16-bit unsigned number
; Output: none
; Registers modified: CCR

; -----------------------LCD_OutFix----------------------
; Output characters to LCD display in fixed-point format
; unsigned decimal, resolution 0.001, range 0.000 to 9.999
; Inputs: RegD is an unsigned 16-bit number
; Outputs: none
; Registers modified: CCR
; E.g., RegD=0, then output ″0.000 ″
; RegD=3, then output ″0.003 ″
; RegD=89, then output ″0.089 ″
; RegD=123, then output ″0.123 ″
; RegD=9999, then output ″9.999 ″
; RegD>9999, then output ″*.*** ″
The second component of a device driver is the implementation of the functions that perform the I/O. If the driver were being
developed in C, then the implementations would have been placed in the corresponding code file, e.g., LCD.C. When
developing a driver in assembly, the implementations are the instructions and comments placed inside the body of the
subroutines. In addition to public functions, a device driver can also have private functions. This interface will require a
private function that outputs to commands to the LCD (notice that private functions do not include LCD_ in their names).
;---------------------outCsr---------------------
; sends one command code to the LCD control/status
; Input: RegA is 8-bit command to execute
; Output: none
 0) save any registers that will be destroyed by pushing on the stack
 1) E=0, RS=0
 2) 4-bit DB7,DB6,DB5,DB4 = most significant nibble of command
 3) E=1
 4) E=0 (latch 4-bits into LCD)
 5) 4-bit DB7,DB6,DB5,DB4 = least significant nibble of command
 6) E=1
 7) E=0 (latch 4-bits into LCD)
 8) blind cycle 90 us wait
 9) restore the registers by pulling off the stack

Jonathan W. Valvano Page 21

valvano@mail.utexas.edu 01/11/08

An important factor in device driver design is to separate the policies of the interface (how to use the programs, which is
defined in the comments placed at the top of each subroutine) from the mechanisms (how the programs are implemented,
which is described in the comments placed within the body of the subroutine.) Possible algorithms for the seven functions are
as follows

LCD_Open
 0) save any registers that will be destroyed by pushing on the stack
 1) initialize timer Timer_Init()
 2) wait 100ms allowing the LCD to power up (can skip this step in TExaS)
 3) set DDRH so that PH5-0 are output signals to the LCD
 4) E=0, RS=0
 5) 4-bit DB7,DB6,DB5,DB4 = $02 (DL=0 4-bit mode)
 6) E=1
 7) E=0 (latch 4-bits into LCD)
 8) blind cycle 90 us wait
 9) outCsr($06) // I/D=1 Increment, S=0 no displayshift
 10)outCsr($0C) // D=1 displayon, C=0 cursoroff, B=0 blink off
 11)outCsr($14) // S/C=0 cursormove, R/L=1 shiftright
 12)outCsr($28) // DL=0 4bit, N=1 2 line, F=0 5by7 dots
 13)LCD_Clear() // clear display
 14)restore the registers by pulling off the stack

LCD_OutChar
 0) save any registers that will be destroyed by pushing on the stack
 1) E=0, RS=1
 2) 4-bit DB7,DB6,DB5,DB4 = most significant nibble of data
 3) E=1
 4) E=0 (latch 4-bits into LCD)
 5) 4-bit DB7,DB6,DB5,DB4 = least significant nibble of data
 6) E=1
 7) E=0 (latch 4-bits into LCD)
 8) blind cycle 90 us wait
 9) restore the registers by pulling off the stack

LCD_Clear
 0) save any registers that will be destroyed by pushing on the stack
 1) outCsr($01) // Clear Display
 2) blind cycle 1.64ms wait
 3) outCsr($02) // Cursor to home
 4) blind cycle 1.64ms wait
 5) restore the registers by pulling off the stack

LCD_OutString
 0) save any registers that will be destroyed by pushing on the stack
 1) read one character from the string
 2) increment the sting pointer to the next character
 3) break out of loop (go to step 6) if the character is NUL(0)
 4) output the character to the LCD by calling LCD_OutChar
 5) loop back to step 1)
 6) restore the registers by pulling off the stack

LCD_GoTo
 0) save any registers that will be destroyed by pushing on the stack
 1) go to step 3 if DDaddr is $08 to $3F or $48 to $FF
 2) outCsr(DDaddr+$80)
 3) restore the registers by pulling off the stack

Page 22 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

LCD_OutDec (recursive implementation)
 1) allocate local variable n on the stack
 2) set n with the input parameter passed in RegD
 3) if(n >= 10){
 LCD_OutDec(n/10);
 n = n%10;
 }
 4) LCD_OutChar(n+$30); /* n is between 0 and 9 */
 5) deallocate variable

LCD_OutFix
 0) save any registers that will be destroyed by pushing on the stack
 1) allocate local variables letter and num on the stack
 2) initialize num to input parameter, which is the integer part
 3) if number is less or equal to 9999, go the step 6
 4) output the string ″*.*** ″ calling LCD_OutString
 5) go to step 19
 6) perform the division num/1000, putting the quotient in letter,
 and the remainder in num
 7) convert the ones digit to ASCII, letter = letter+$30
 8) output letter to the LCD by calling LCD_OutChar
 9) output ′.′ to the LCD by calling LCD_OutChar
 10)perform the division num/100, putting the quotient in letter,
 and the remainder in num
 11)convert the tenths digit to ASCII, letter = letter+$30
 12)output letter to the LCD by calling LCD_OutChar
 13)perform the division num/10, putting the quotient in letter,
 and the remainder in num
 14)convert the hundredths digit to ASCII, letter = letter+$30
 15)output letter to the LCD by calling LCD_OutChar
 16)convert the thousandths digit to ASCII, letter = num +$30
 17)output letter to the LCD by calling LCD_OutChar
 18)output ′ ′ to the LCD by calling LCD_OutChar
 19)deallocate variables
 20)restore the registers by pulling off the stack

 The third component of a device driver is a main program that calls the driver functions. This software has two
purposes. For the developer (you), it provides a means to test the driver functions. It should illustrate the full range of features
available with the system. The second purpose of the main program is to give your client or customer (e.g., the TA) examples
of how to use your driver. Here is a 9S12DP512 example test program, assuming a positive logic switch is connected to
PORTAD0 bit 7 (PAD7).

 org $4000
Entry lds #$4000
 bset ATDDIEN,#$80 ;PAD7 digital input
 jsr LCD_Open ;***Your function that initializes the LCD***
start
 ldx #Welcome
 jsr LCD_OutString ;***Your function that outputs a string***
 ldx #TestData
loop brset PTAD,#$80,* ;wait for switch release
 brclr PTAD,#$80,* ;wait for switch touch
 jsr LCD_Clear ;***Your function that clears the display***
 ldd 0,x
 jsr LCD_OutDec ;***Your function that outputs an integer***
 ldaa #$40 ;Cursor location of the 8th position
 jsr LCD_GoTo ;***Your function that moves the cursor***

Jonathan W. Valvano Page 23

valvano@mail.utexas.edu 01/11/08

 ldd 2,x+
 jsr LCD_OutFix ;***Your function that outputs a fixed-point***
 cpx #TestDataEnd
 bne loop
 jsr LCD_Clear ;***Your function that clears the display***
 bra start
Welcome fcc "Welcome "
 fcc " " ;32 spaces
 fcc "to 319K!"
 fcb 0
TestData fdb 0,5,16,123,5432,9876,9999,10000,23456,65535
TestDataEnd

Procedure
You will use the TExaS simulator to develop and test your device driver, and then you will copy and paste your solutions
into the Metrowerks version for running on the real 9S12. There are many functions to write in this lab, so it is important to
develop the device driver in small pieces. One technique you might find useful is desk checking. Basically, you hand-
execute your functions with a specific input parameter. For example, using just a pencil and paper think about the sequential
steps that will occur when LCD_OutDec or LCD_OutFix processes the input 9876. Later, while you are debugging the
actual functions on the simulator, you can single step the program and compare the actual data with your expected data.

Part a) One by one each of the subroutines should be designed, implemented and tested. Successive refinement is a
development approach that can be used to solve complex problems. If the problem is too complicated to envision a solution,
you should redefine the problem and solve an easier problem. If it is still too complicated, redefine it again, simplifying it
even more. You could simplify LCD_OutFix
 1) implement the variables in global variables (rather than as local variables on the stack)
 2) ignore special cases with illegal inputs
 3) implement just one decimal digit
During the development phase, you implement and test the simpler problem then refine it, adding back the complexity
required to solve the original problem. You could simplify LCD_OutDec in a similar fashion.

Part b) Using ExpressSCH (or another equivalent application), draw the hardware circuit diagram. You can find the
ExpressSCH file used to create Figure 5.1 on http://users.ece.utexas.edu/~valvano/Starterfiles/EE319K_DP512.sch. You
can checkout a LCD display from the second floor lab. If you choose to interface in a manner different than Figure 5.1, have
a TA approve your design. Build the interface using the circuit diagram. Please double check your connections before
applying power.

Part c) This lab is sufficiently complex that it should be first debugged on the TExaS simulator. Although this LCD
physically looks like 16 characters by 1 row, internally it is configured as 8 characters by 2 rows. To simulate this LCD in
TExaS, we will define a 16 by 2 LCD. The first 8 characters of the first row of the TExaS LCD will map into the first 8
characters (left most) of the real LCD. The first 8 characters of the second row of the TExaS LCD will map into the second
(right most) 8 characters of the real LCD. Even though we will not actually be connecting R/W to PAD0, we will attach
R/W=PAD0 in TExaS, so that line will be simulated as a 0. The “Busy cleared after 37us/1.54ms” option allows you to test
the timing aspect of the LCD interface (the blind cycle waits).

Page 24 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Figure 5.2. One possible way to interface the LCD in TExaS.

Once the system is debugged on the simulator, download and debug it on the real 9S12.

During demonstration to the TA, you will run your system on the simulator and show the allocation, access and deallocation
of the local variables. You will also be required to demonstration the operation on the actual 9S12. Each time a function is
called, an activation record is created on the stack, which includes parameters passed on the stack (none in this lab), the
return address, and the local variables. You will be asked to create a stack window and identify the activation records created
during the execution of LCD_OutDec.

Deliverables
 1) Circuit diagram (with your name and date)
 2) Assembly listing of your final program (device driver plus main program that tests the system)

Jonathan W. Valvano Page 25

valvano@mail.utexas.edu 01/11/08

Lab 6. Real-Time Position Measurement System
Preparation
 Read Sections 5.1, 5.5, 6.6, 11.1, 11.5, and 11.9.2
 http://users.ece.utexas.edu/~valvano/EE319K/312-9100F-SlidePot.pdf
This lab has these major objectives:
 • An introduction to sampling analog signals using the ADC interface;
 • Development of an ADC device driver;
 • Data conversion and calibration techniques;
 • Develop an interrupt-driven real-time sampling device drive.
Starter files
 • OC example in TExaS;
 • TUT3 example in TExaS
 The basic approach to this lab will be to first develop and debug your system
using the simulator. During this phase of the project you will use the TExaS debugger
to observe your software operation. After the software is debugged, you will run your
software on the real 9S12.

Background
 You will design a position meter with a range of about 3 cm. A linear slide potentiometer (Alpha RA300BF-10-
20D1-B54) converts position into resistance (0<R<50 kΩ). You will use an electrical circuit to convert resistance into voltage
(Vin). Since the potentiometer has three leads, one possible solution is shown in Figure 6.1. The 9S12 ADC will convert
voltage into a 10-bit digital number (0 to 1023). Your software will calculate position from the ADC sample as a decimal
fixed-point number. The position measurements will be displayed on the LCD using the LCD device driver developed in the
last lab. A periodic interrupt will be used to establish the real-time sampling.

Figure 6.1. Possible circuit diagram of the sensor interface (look on the sensor for pin numbers 1,2,3).

The left of Figure 6.2 shows the data flow graph of this system. Dividing the system into modules allows for concurrent
development and eases the reuse of code. The right of Figure 6.2 shows the call graph.

Position
Sensor

Voltage
0 to +5V

ADC
hardware

ADC
driver

Sample
0 to 1023

OC
ISR

Sample
0 to 1023

OC
hardware

LCD
display

LCD
driver

Fixed-point
0 to 3.000

Position
0 to 3 cm

main

OC
hardware

OC
init

LCD
hardware

LCD
driver

OC
ISR

ADC
hardware

ADC
driver

Figure 6.2. Data flow graph and call graph of the position meter system.

Page 26 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

 You should make the position resolution and accuracy as good as possible. The position resolution is the smallest
change in position that your system can reliably detect. In other words, if the resolution were 0.01 cm and the position were
to change from 1.00 to 1.01 cm, then your device would be able to recognize the change. Resolution will depend on the
amount of electrical noise, the number of ADC bits, and the resolution of the output display software. Considering just the
errors due to the 10-bit ADC, we expect the resolution to be 3cm/1024 or about 0.003cm. Accuracy is defined as the
absolute difference between the true position and the value measured by your device. Accuracy is dependent on the same
parameters as resolution, but in addition it is also dependent on the stability of the transducer and the quality of the
calibration procedure.

In this lab, you will be measuring the position of the armature (the movable part) on the slide potentiometer. This signal
has very few frequency components (0 to 2 Hz.) According to the Nyquist Theorem, we need a sampling rate greater than 4
Hz. Consequently, you will create a system with a sampling rate of 5 Hz. You will sample the ADC exactly every 0.2 sec
and calculate position using decimal fixed-point with ∆ of 0.001 cm. You should display the results on the LCD, including
units. An output compare interrupt will be used to establish the real-time periodic sampling.

 Nyquist Theorem: If fmax is the largest frequency component of the analog signal, then you must sample more than
twice fmax in order to faithfully represent the signal in the digital samples. For example, if the analog signal is A + B
sin(2πft + φ) and the sampling rate is greater than 2f, you will be able to determine A, B, f, and φ from the digital
samples.

Valvano Postulate: If fmax is the largest frequency component of the analog signal, then you must sample more than ten
times fmax in order for the reconstructed digital samples to look like the original signal when plotted on a voltage versus
time graph.

 When a transducer is not linear, you could use a piece-wise linear interpolation to convert the ADC sample to
position (∆ of 0.001 cm.) The 9S12 assembly language etbl instruction is an efficient mechanism to perform the
interpolation. The etbl.RTF assembly program included with TExaS is an example of a piece-wise linear interpolation
using the etbl instruction. There are two small tables Xtable and Ytable. The Xtable contains the ADC results and
the Ytable contains the corresponding positions. The ADC sample is passed into the lookup function. This function first
searches the Xtable for two adjacent of points that surround the current ADC sample. Next, the function uses the etbl
instruction to perform a linear interpolation to find the position that corresponds to the ADC sample. You are free to
implement the conversion in any acceptable manner, with the exception that you are not allowed to use the etbl instruction.
 The 10-bit ADC converters on the 9S12 are successive approximation devices with a short conversion time. You
need to enable the ADC in ATD0CTL2. In particular, you will set ATD0CTL2=$80. You can define the number of ADC
conversions (1 to 8) in a sequence using ATD0CTL3. For this lab, you will only need a single conversion, so you can set the
control bits S8C S4C S2C S1C in ATD0CTL3 equal to 0001 respectively. In particular, you will set ATD0CTL3=$08. Bit 7
of determines if the ADC operates with 8 bits or 10 bits. You will clear bit 7 to specify 10-bit precision. The remaining 7 bits
of ATD0CTL4 specify the ADC clock, which will determine the time to perform an ADC conversion. If the 9S12DP512 were
running at 8 MHz, you should set ATD0CTL4=$03. At this setting, the ADC will be clocked at 1 MHz, and the ADC
conversion time will be equal to 14 µs. However, in this lab we will be running the 9S12DP512 at 24 MHz, therefore you
could set ATD0CTL4=$05, the ADC will be clocked at 2 MHz, and the ADC conversion time will be equal to 7 µs. In
summary, the ADC initialization should set
 ATD0CTL2=$80 turns on ADC
 ATD0CTL3=$08 specifies ADC sequence will perform one conversion
 ATD0CTL4=$05 specifics 10-bit mode, and 7us conversion time

Writing to the ADC Control register (ATD0CTL5) begins a conversion. The ADC chip clocks itself. To perform a right-
justified ADC conversion of channel 4, you should write a $84 to ATD0CTL5. After the first sample is complete, CCF0 is set
and the result can be read out of the first result register, ATD0DR0. After the entire sequence has been converted, the SCF bit
is set. In summary, the ADC conversion of channel 4 requires the following actions
 1) ATD0CTL5=$84 starts the ADC
 2) Read ATD0STAT1 and look at bit 0 (CCF0)
 3) Loop back to step 2 over and over until CCF0 is set (7us)
 4) Read 10-bit result in ATD0DR0

Jonathan W. Valvano Page 27

valvano@mail.utexas.edu 01/11/08

Procedure
 The analog signal connected to the microcomputer comes from a position sensor, such that the analog voltage ranges
from 0 to +5V as the position ranges from 0 to 3 cm. First, you will use output compare interrupts to establish 5 Hz sampling.
In particular, the ADC should be started exactly every 0.2 s. Second, you will convert the ADC sample (0 to 1023) into a 16-
bit unsigned decimal fixed-point number, with a ∆ of 0.001 cm. Lastly, you will use your LCD_OutFix function from the
previous lab to display the sampled signal on the LCD. Include units on your display.

Add this code to your project, so the system runs at 24 MHz in both Run and Load modes. You should double-check
the wait times in the LCD routines to make sure the blind cycle waits are valid for the 24 MHz clock.
SYNR equ $0034 ; CRG Synthesizer Register
REFDV equ $0035 ; CRG Reference Divider Register
CRGFLG equ $0037 ; CRG Flags Register
CLKSEL equ $0039 ; CRG Clock Select Register
PLLCTL equ $003A ; CRG PLL Control Register
;********* PLL_Init ****************
; Active PLL so the 9S12 runs at 24 MHz
; Inputs: none
; Outputs: none
; Errors: will hang if PLL does not stabilize
PLL_Init
 movb #$02,SYNR ; 9S12DP512 OSCCLK is 16 MHz
 movb #1,REFDV
 movb #0,CLKSEL ; PLLCLK = 2 * OSCCLK * (SYNR + 1) / (REFDV + 1)
 movb #$D1,PLLCTL ; Clock monitor, PLL On, high bandwidth filter
 brclr CRGFLG,#$08,* ; wait for PLLCLK to stabilize.
 bset CLKSEL,#$80 ; Switch to PLL clock
 rts

Part a) You can create a scale by Xerox-copying a metric ruler. There are many ways to build the transducer. One method
requires cutting, gluing, and soldering. Start with a piece of wood or plastic a little larger than the potentiometer. Glue the
frame (the fixed part) of the potentiometer to this solid object. Tape or glue the metric ruler on the frame but near the
armature (the movable part) of the sensor. Attach or draw a hair-line to the armature, which will define the position
measurement. Solder three solid wires to the slide potentiometer. If you do not know how to solder, ask your TA for a lesson.
Label these three wires +5 (Pin3), Vin (Pin2), and ground (Pin1), as shown in Figure 6.1.

Be careful when connecting the potentiometer to the computer, because if you mistakenly reverse two of the wires, you can
cause a short from +5V to ground.

Part c) Write two subroutines: ADC_Init will initialize the ADC interface and ADC_In4 will sample the ADC channel 4.
Use the simulator to test these functions.

Part d) Write a simple simple version of the system, which you can use to collect calibration data. In particular, this system
should first sample the ADC and then display the results as unsigned decimal numbers. You should use your LCD_OutDec
developed in the previous lab. Collect five to ten calibration points and create a table showing the true position (as
determined by reading the position of the hair-line on the ruler), the analog input measured with a digital voltmeter and the
ADC sample (like the first three columns of Table 6.1).

Position Analog input ADC sample Fixed-point Output
0.010 cm 0.000 V 0 10
0.741 cm 1.234 V 252 741
1.500 cm 2.500 V 512 1500
2.074 cm 3.456 V 707 2074
3.000 cm 5.000 V 1023 3000

Table 6.1. Calibration results of the conversion from ADC sample to fixed-point.

Part e) Use this calibration data to write a subroutine that converts a 10-bit binary ADC sample into a 16-bit unsigned fixed-
point number. The input parameter (10-bit ADC sample) to the subroutine will be passed in using Register D, and your
subroutine will return the result (integer portion of the fixed-point number) in Register D. Table 6.1 shows some example
results. You are allowed to use a linear equation to convert the ADC sample into the fixed-point number.

Page 28 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Part f) Write a subroutine: OC_Init will initialize the output compare system to interrupt at exactly 5 Hz (every 0.2
second). Use the simulator to test these functions. When debugging your code in TExaS it will be more convenient to run
with a shorter OC interrupt period, e.g., 10 to 50ms.
 1) disable interrupts to make the initialization atomic (set I bit in CCR)
 2) enable the timer and an output compare channel, make PT7 an output (interface a LED to this pin)
 3) arm output compare
 4) specify when the first output compare interrupt will be
 5) enable interrupts (clear I bit in CCR)

Part g) Write an output compare interrupt handler that samples the ADC and outputs the data to the LCD. Use the simulator
to test these functions. Using the interrupt synchronization, the ADC will be sampled at almost equal time intervals1. The
interrupt service routine performs these tasks
 1) acknowledge the output compare interrupt by clearing the flag that requested the interrupt
 2) specify the time for the next interrupt
 3) toggle PT7 (change from 0 to 1, or from 1 to 0)
 4) sample the ADC
 5) convert the sample into a fixed-point number (0 to 3000)
 6) output the fixed-point number on the LCD
 7) return from interrupt

Part h) Write a simple main program, which initializes the PLL, timer, LCD, ADC and output compare interrupts. After
initialization, this main program (foreground) performs a do-nothing loop. The entire run-time operations occur in the output
compare interrupt service routine (background).

Part i) Use the system to collect another five to ten data points, creating a table showing the true position (xti as determined
by reading the position of the hair-line on the ruler), and measured position (xmi using your device). Calculate average
accuracy by calculating the average difference between truth and measurement,

 Average accuracy (with units in cm) =
1
n

xti − xmi
i=1

n
∑

True position
xti

Measured Position
xmi

Error
xti - xmi

Table 6.2. Accuracy results of the position measurement system.

Deliverables
 1) Circuit diagram showing the position sensor and LCD
 2) Final version of the software
 3) Calibration data, like Table 6.1
 4) Accuracy data and accuracy calculation, Table 6.2

1 More precisely, the output compare flag is set at exact time intervals. There is some variability in when the ISR runs
depending on which instruction is being executed at the time when the flag is set.

Jonathan W. Valvano Page 29

valvano@mail.utexas.edu 01/11/08

Lab 7 Distributed Data Acquisition System

Goals • Develop a distributed data acquisition system
Review • Operation of the SCI in Section 5.3, 6.4, and 11.7,

• Fifo queues in Sections 10.8 and 11.2.
Starter files • TUT2 TUT4 examples in TExaS

Procedure
 You will extend the system from Lab 6 to implement a distributed system. In particular, one 9S12 will sample the data at
5 Hz and a second 9S12 will display the results on its LCD. Basically the hardware/software components from Lab 6 will be
divided and distributed across two 9S12 microcontrollers. Figure 7.1 shows the data flow graph of the distributed data
acquisition system. The sensor is attached to computer 1, and the ADC (ADC_In4 function) in computer 1 generates a digital
value from 0 to 1023. The output compare periodic interrupt in computer 1 establishes the real-time sampling at 5 Hz. You
will send data from computer 1 to computer 2 using asynchronous serial communication (SCI1). Busy-wait synchronization
on TDRE must be used in computer 1, and RDRF interrupt synchronization must be used on computer 2. You can choose any
baud rate you wish, as long as both computers use the same rate.
 One way to send the 10-bit sample is to break it into two parts and transmit it as two 8-bit bytes. For example, let
b9b8b7b6b5b4b3b2b1b0 be a 10-bit sample. One possibility is to transmit two bytes 011b9b8b7b6b5 and 010b4b3b2b1b0. This way
the receiver can combine the two bytes back into a 10-bit sample without mistakenly switching the most significant and least
significant parts. Also notice that all transmissions are printable ASCII, so the two parts of the system can be separately
debugged in TExaS. The time to transmit one bit is called the bit time, which is 1 divided by the baud rate. Every 200 ms,
two bytes will be transferred (a total of 20 bits). Choose a baud rate so that the time to transmit 20 bits is short compared to
200 ms. This will guarantee that both the transmit data register and the transmit shift register will be empty at the time the OC
ISR is executed. Therefore, calling SCI_OutChar twice (busy-wait synchronization) will not actually have to wait, because
the first data will be moved immediately into the transmit shift register and the second data can be loaded into the transmit
data register (to be transmitted after the first frame is done). With this protocol if you lose a transmission, then the receiver
should discard the extra byte. In this scheme, it does not matter which computer starts first.
 An alternate scheme to transmit 10-bit data on an 8-bit channel is to encode the data as a signed 8-bit difference from the
previous data. The receiver starts with a 16-bit 0, each 8-bit signed data received is promoted to 16-bit signed and added to
the previous value. One flaw in this protocol is if you lose a transmission, then an error will exist in all subsequent samples.
However since each 10-bit sample is transmitted as only one 10-bit frame, this protocol will be twice as fast as the previous.
 If you implement a scheme that requires 3 or more SCI transmissions per sample, then the busy-wait synchronization in
the transmitter will actually have to wait. This system is simple enough that no data should be lost. Thus, you do not have to
solve the lost data scenario. However, you might have to start computer 2 before starting computer 1.
 An RDRF interrupt will occur in computer 2 for every SCI frame received. The FIFO queue is used to pass data from the
RDRF interrupt service routine (background on computer 2) to the main program running in the foreground on computer 2.
If the rate at which the ISR puts data into the FIFO is slower than the rate at which data can be sent to the LCD, then the
FIFO will never become full. You are free to implement either a 16-bit FIFO (every other RDRF interrupt puts into the FIFO)
or an 8-bit FIFO (every RDRF interrupt puts). The main program in computer 2 will output the position on its LCD.

Position
Sensor

Voltage
0 to +5V

ADC
hardware

ADC
driver

Sample
0 to 1023

OC
ISR

Sample
0 to 1023

OC
hardware

LCD
display

LCD
driver

Fixed-point
0 to 3.000

Position
0 to 3 cm

SCI
driver

SCI1
hardware

main RDRF
ISR

SCI1
hardware

Computer 1

Computer 2

Data
0 to 255

Data
0 to 255

Data
0 to 255

FIFO

Data
0 to 255

Data
0 to 1023

Data
0 to 1023

Figure 7.1. Data flows from the sensor through the two microcontrollers to the LCD. The output compare timer is used to
trigger the real-time sampling. Use the special serial cable to connect the two SCI1 ports.

Page 30 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Figure 7.2 shows a possible call graph of the system. Dividing the system into modules allows for concurrent development
and eases the reuse of code.

main1

OC
hardware

OC
init

SCI1
hardware

SCI
driver

OC
ISR

ADC
hardware

ADC
driver

SCI1
hardware

SCI
driver

LCD
hardware

LCD
driver

RDRF
ISR

FIFO

Computer 1 Computer 2
main2

Figure 7.2. A call graph showing the modules used by the distributed data acquisition system.

Computer 1 software tasks
Part a) Write a subroutine: SCI_Init1 that will initialize the SCI1 transmitter in computer 1.
 1) enable SCI1 transmitter (no interrupts)
 2) set the baud rate

Part b) Write a subroutine: SCI_OutChar for computer 1 that sends one byte using busy-wait synchronization on TDRE.
 1) Wait for TDRE in SCI1SR1 to be 1
 2) Write a byte to SCI1DRL

Part c) Modify the output compare interrupt handler from Lab 6 so that it samples the ADC at 5 Hz and sends the data to the
other computer using SCI. The interrupt service routine performs these tasks
 1) acknowledge the output compare interrupt by clearing the flag that requested the interrupt
 2) specify the time for the next interrupt
 3) toggle PT7 (change from 0 to 1, or from 1 to 0)
 4) sample the ADC
 5) break the 10-bit sample into two parts and send two bytes to the other computer

(calls SCI_OutChar twice)
 6) return from interrupt

Part d) Write the main program for computer 1, which initializes the PLL, timer, ADC, SCI1, and output compare interrupts.
After initialization, this main program (foreground) performs a do-nothing loop. The entire run-time operations in computer 1
occur in the output compare interrupt service routine (background).

Computer 2 software tasks
Part e) Design, implement and test a FIFO software module for computer 2 that operates on either 8-bit or 16-bit values.
This module should operate in a similar manner as the FIFOs in the example tut4. I.e., write three subroutines
Fifo_Init, Fifo_Put, Fifo_Get. The size of the queue can be about 4 to 6 elements. Use the simulator to test these
functions. The software design steps are
1) Define the names of the functions, input/output parameters, and calling sequence. Type these definitions in as comments
that exist at the top of the subroutines.
2) Write pseudo-code for the operations. Type the sequences of operations as comments that exist within the bodies of the
subroutines.
3) Write assembly code to handle the usual cases. I.e., at first, assume the FIFO is not full on a put, not empty on a get, and
the pointers do not need to be wrapped.
4) Write a main program to test the FIFO operations. Debug in the TExaS simulator.
5) Iterate steps 3 and 4 adding code to handle the special cases.

Jonathan W. Valvano Page 31

valvano@mail.utexas.edu 01/11/08

Part f) Write a subroutine: SCI_Init2 that will initialize the SCI1 receiver in computer 2.
 1) clear a global error count
 2) enable SCI1 receiver (arm interrupts for RDRF)
 3) set the baud rate to match computer 1
 4) enable interrupts

Part g) Write a RDRF interrupt handler that receives data from the other computer and puts them into a FIFO queue. The
number of lost samples will be maintained in the global error count. The interrupt service routine performs these tasks
 1) acknowledge the interrupt by clearing the flag which requested the interrupt
 2) read the data received from SCI1DRL
 3) toggle PT7 (change from 0 to 1, or from 1 to 0)
 4) put the new data into the FIFO queue
 5) increment a global error count if the FIFO fills up (but don’t loop back)
 6) return from interrupt

Part h) Design a main program for computer 2 that reads data from the FIFO, converts it to fixed-point, and displays the
measurement using the same LCD routines developed in Lab 5 and used in Lab 6.
The main program in this data acquisition system performs these tasks
 1) initialize PLL, FIFO, LCD, and SCI
 2) try to remove a sample from the FIFO queue
 3) go back to step 2 if the FIFO was empty and no data is available
 4) convert sample to fixed-point (same as Lab 6)
 5) output the result as a fixed-point number (same as Lab 6) with units
 6) repeat steps 2,3,4,5 over and over

(5% extra credit) Part i) In this section you will estimate the maximum sampling rate. The limitation of computer 1 will be
the time it takes to transmit 20 bits on the SCI. The limitation of computer 2 will be the time it takes to display one
measurement on the LCD (e.g., if you move the LCD cursor rather than clearing the display, it will run faster). Change the
output compare interrupt period in computer 1 so that it is close to but larger (slower) than the time for computer 1 to
transmit one measurement and the time it takes computer 2 to display one measurement. Experimentally, verify the system
can operate properly at this sampling rate (show the FIFO never gets full). Next, change the output compare sample period so
that it is close to but smaller (faster) than these two times. Experimentally, determine want happens when you try to sample
this fast (it doesn’t work, explain what happens and why). Without actually doing it, describe two changes to the system you
could do so that the sampling rate could be increased beyond this limit. Hint: changing the size of the FIFO will not affect the
maximum sampling rate.

Deliverables
 1) Circuit diagram showing the position sensor and LCD (should be the same as Lab 6)
 2) Final versions of the software in the two computers

Page 32 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Special cable connects the 4-pin RS232 interface (on SCI1) between the two computers
Computer 1 Computer 2
TxD -- RxD
RxD -- TxD
Ground -- Ground

Jonathan W. Valvano Page 33

valvano@mail.utexas.edu 01/11/08

Lab 8. Music generation using a Digital to Analog Converter

Goals • DAC conversion,
 • Design a data structure to represent music,
 • Develop a system to play sounds.
Download http://users.ece.utexas.edu/~valvano/Starterfiles/dac.xls

Background
 Most digital music devices rely on high-speed DAC converters to create the analog waveforms required to produce
high-quality sound. In this lab you will create a very simple sound generation system that illustrates this application of the
DAC. Your goal is to create an embedded system that plays three note (a digital piano with three keys). The first step is to
design and test a 4-bit DAC, which converts 4 bits of digital output from the 9S12 to an analog signal. You are free to design
your DAC with a precision more than 4 bits. You will convert the binary bits (digital) to an analog output using a simple
resistor network. During the static testing phase, you will connect the DAC analog output to your voltmeter and measure
resolution, range, precision and accuracy. During the dynamic testing phase you will connect the DAC output to headphones,
and listen to sounds created by your software. It doesn’t matter what range the DAC is, as long as there is an approximately
linear relationship between the digital data and the speaker current. The performance score of this lab is not based on
loudness, but sound quality. The quality of the music will depend on both hardware and software factors. The precision of the
DAC, external noise and the dynamic range of the speaker are some of the hardware factors. Software factors include the
DAC output rate and the complexity of the stored sound data. You can create a 3k resistor from two 1.5k resistors. You can
create a 6k resistor from two 12k resistors,

6812
bit3

bit2

bit1

bit0

static
testing

Vout
voltmeter

I out

speaker

6812
bit3

bit2

bit1

bit0

dynamic
testing

Figure 8.1. DAC allows the software to create music.

The second step is to design a low-level device driver for the DAC. Remember, the goal of a device driver is to
separate what the device does (general descriptions of DAC_Init and DAC_Out) from how is does it (implementations of
DAC_Init and DAC_Out). The third step is to design a data structure to store the sound waveform. You are free to design
your own format, as long as it uses a formal data structure. Compressed data occupies less storage, but requires runtime
calculation. The fourth step is to organize the digital piano software into a device driver. Although you will be playing only
three notes, the design should allow additional notes to be added with minimal effort. For example, if your system plays C, D,
E, then you will need public functions Piano_Stop Piano_C, Piano_D and Piano_E. The Stop function makes it
silent and the other functions activate a sound. A background thread implemented with output compare will fetch data out of
your music structure and send them to the DAC. The last step is to write a main program that inputs from binary switches and
performs the four public functions.
 If you output a sequence of numbers to the DAC that form a sine wave, then you will hear a continuous tone on the
speaker, as shown in Figure 8.2. The measured data was collected using a 4-bit DAC with a range of 0 to +5 V. The plot on
the left was measured with a digital scope (without the speaker attached). The plot on the left shows the frequency response
of this data, plotting amplitude (in dB) versus frequency (in kHz). This measured waveform is approximately
2.7+2.3sin(2π440 t) volts. The two peaks in the spectrum are at DC and 440 Hz (e.g., 20*log(2.3)= 7.2 dB). The loudness of
the tone is determined by the amplitude of the wave. The pitch is defined as the frequency of the wave. Table 8.1 contains
frequency values for the notes in one octave.

Page 34 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

period

loudness

pitch = 1/period

ms
0.0 1.0 2.0 3.0 4.0 5.0

V

-5
-4
-3
-2
-1
0
1
2
3
4
5

23Dec2006 10:18

kHz

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-50
-40
-30
-20
-10

0
10
20

23Dec2006 10:18

Figure 8.2. A 440Hz sine wave generates a pure tone with note A (theoretical and experimental). The plot on the right is the
Fourier Transform(frequency spectrum dB versus kHz) of the data plotted on the left.

Note frequency
C 523 Hz
B 494 Hz
Bb 466 Hz
A 440 Hz
Ab 415 Hz
G 392 Hz
Gb 370 Hz
F 349 Hz
E 330 Hz
Eb 311 Hz
D 294 Hz
Db 277 Hz
C 262 Hz

Table 8.1. Fundamental frequencies of standard musical notes. The frequency for ‘A’ is exact.
The frequency of each note can be calculated by multiplying the previous frequency by12 2 . You can use this method to
determine the frequencies of additional notes above and below the ones in Table 8.1. There are twelve notes in an octave,
therefore moving up one octave doubles the frequency. Figure 8.3 illustrates the concept of instrument. You can define the
type of sound by the shape of the voltage versus time waveform. Brass instruments have a very large first harmonic
frequency.

period

Figure 8.3. A waveform shape that generates a trumpet sound.

Jonathan W. Valvano Page 35

valvano@mail.utexas.edu 01/11/08

The tempo of the music defines the speed of the song. In 2/4 3/4 or 4/4 music, a beat is defined as a quarter note. A moderate
tempo is 120 beats/min, which means a quarter note has a duration of ½ second. A sequence of notes can be separated by
pauses (silences) so that each note is heard separately. The envelope of the note defines the amplitude versus time. A very
simple envelope is illustrated in Figure 8.4. The 9S12DP512 has plenty of processing power to create these types of waves.

330 Hz 523 Hz

0.5s 0.5s 1.0s

330 Hz

Figure 8.4. You can control the amplitude, frequency and duration of each note (not drawn to scale).

The smooth-shaped envelope, as illustrated in Figure 8.5, causes a less staccato and more melodic sound. This type of sound
generation may be difficult to produce in real-time on the 9S12C32. You do not need to create envelopes in this lab.

330 Hz330 Hz 523 Hz

0.5s 0.5s 1.0s

Figure 8.5. The amplitude of a plucked string drops exponentially in time.

A chord is created by playing multiple notes simultaneously. When two piano keys are struck simultaneously both notes are
created, and the sounds are mixed arithmetically. You can create the same effect by adding two waves together in software,
before sending the wave to the DAC. Figure 8.6 plots the mathematical addition of a 262 Hz (low C) and a 392 Hz sine wave
(G), creating a simple chord. You do not need to create chords in this lab assignment.

-2

-1

0

1

2

0 0.005 0.01 0.015 0.02
Time (sec)

So
un

d
A

m
pl

itu
de

Figure 8.6. A simple chord mixing the notes C and G.

Procedure
Part a) Draw the circuit required to interface the DAC to the 9S12. Design the DAC converter using a simple resistor-adding
technique. Use resistors in a 1/2/4/8 resistance ratio. Select values in the 1.5 kΩ to 12 kΩ range. For example, you could use
1.5 kΩ, 3 kΩ, 6 kΩ, and 12 kΩ. Notice that you could create double/half resistance values by placing identical resistors in
series/parallel. It is a good idea to email your design to your TA and have him/her verify your design before you build it.
You can solder 24 guage solid wires to the jack to simplify connecting your circuit to the headphones.

Page 36 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Figure 8.7. A bottom-view mechanical drawing of the stereo jack (connect pin 1 to ground and pin 3 to the DAC output).

Figure 8.8. Use the DC motor feature to simulate a simple DAC (you must connect the tachometer input to an unused ADC
pin, even though you are not using the tachometer).

Part b) Write a low-level device driver for the DAC interface. Include two functions that implement the DAC interface. The
function DAC_Init() initializes the DAC, and the function DAC_Out sends a new data value to the DAC. You can debug
your software in TExaS using the DC motor I/O device. This module allows you to connect a DAC to an output port. You
can select the precision of the DAC (4 bits in this case). You can visualize the generated waveform on the scope by selecting

Jonathan W. Valvano Page 37

valvano@mail.utexas.edu 01/11/08

the D/A output (or DC motor power). Figure 8.8 shows the TExaS dialog to interface the DAC to PM3,2,1,0, and Figure 8.9
shows a sine wave generated by a 4-bit DAC simulated in TExaS.

Figure 8.9. The 4-bit DAC is used to create a sin wave using TExaS.

Part c) Write a couple of simple main programs that test the DAC interface. This main program can be used for static testing.
You can single step this program using the debugger to test the static function of the DAC (Table 8.2)
 org $4000
Entry lds #$4000
 jsr DAC_Init
 clra
loop jsr DAC_Out
 inca
 anda #$0F
 bra loop

Part d) Using Ohm's law and fact that the digital output voltages will be approximately 0 and 5 V, make a table of the
theoretical DAC voltage and as a function of digital value (without the speaker attached). Calculate resolution, range,
precision and accuracy. See Table 8.2.

This main program can be used for dynamic testing. It creates triangle waveform (adjust the 1000 to affect the frequency).
 org $4000
Entry lds #$4000
 jsr Timer_Init
 jsr DAC_Init
 clra
 psha
n equ 0
loop ldd #1000
 jsr Timer_Wait
 ldaa n,sp
 inca
 jsr DAC_Out
 staa n,sp
 cmpa #15
 bne loop
loop2 ldd #1000
 jsr Timer_Wait
 ldaa n,sp
 deca
 jsr DAC_Out
 staa n,sp
 cmpa #0

Page 38 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

 bne loop2
 bra loop

Bit3 bit2 bit1 bit0 Theoretical DAC voltage Measured DAC voltage
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 8.2. Static performance evaluation of the DAC.

Part e) Design and write the piano device driver software. Add minimally intrusive debugging instruments to allow you to
visualize when interrupts are being processed.

Part f) Write a main program to run the entire system. Document clearly the operation of the routines. Figure 8.10 shows the
data flow graph of the music player.

Jonathan W. Valvano Page 39

valvano@mail.utexas.edu 01/11/08

maintimer
hardware

timer
interface

push
buttons

switch
interface

Sound
interface Speaker

hardware

music

Figure 8.10. Data flows from the memory and the switches to the speaker.

Figure 8.11 shows a possible call graph of the system. Dividing the system into modules allows for concurrent development
and eases the reuse of code.

main
program

music

Switch
hardware

Switch
driver

speaker
hardware

DAC
driver

OC
hardware

Figure 8.11. A call graph showing the three modules used by the music player.

Deliverables
 1) Circuit diagram showing the DAC and any other hardware used in this lab

2) Software Design
 Draw pictures of the data structures used to store the sound data
 If you organized the system different than Figure 8.7 and 8.8, then draw its data flow and call graphs

3) Measurement Data
 Show the theoretical response of DAC voltage versus digital value (part d)
 Show the experimental response of DAC voltage versus digital value (part d)
 Calculate resolution, range, precision and accuracy
 4) Final version of the music playing software (intermediate testing software is not required)

Checkout
 You should be able to demonstrate the three notes. You should be prepared to discuss alternative approaches and be
able to justify your solution.

Extra Credit. Extend the system so that is plays your favorite song (a sequence of notes, set at a specific tempo and includes
an envelop like Figure 8.4). Your goal is to play your favorite song. One possible approach is to use two output compare
interrupts. A fast output compare ISR outputs the sinewave to the DAC (Figure 8.2). The rate of this interrupt is set to specify
the frequency (pitch) of the sound. A second slow output compare ISR occurs at the tempo of the music. For example, if the

Page 40 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

song has just quarter notes at 120, then this interrupt occurs every 500ms. If the song has eight notes, quarter notes and half
notes, then this interrupt occurs at 250, 500, 1000ms respectively. During this second ISR, the frequency of the first ISR is
modified according to the note that is to be played next. Compressed data occupies less storage, but requires runtime
calculation. On the other hand, a complete list of points will be simpler to process, but requires more storage than is available
on the 9S12. The fourth step is to organize the music software into a device driver. Although you will be playing only one
song, the song data itself will be stored in the main program, and the device driver will perform all the I/O and interrupts to
make it happen. You will need public functions Play and Stop, which perform operations like a cassette tape player. The
Play function has an input parameter that defines the song to play. If you complete the extra credit (with input switches that
can be used to play and stop), then the piano functionality in parts e) and f) need not be completed. Either way, parts a) b) c)
and d) are required.

Jonathan W. Valvano Page 41

valvano@mail.utexas.edu 01/11/08

Labs 9 and 10. TExaS Robots 1.7 (for the lastest information check the web site)
http://users.ece.utexas.edu/~valvano/EE319K

 TRobots ("TExaS-Robots") is a 9S12 programming competition. Unlike arcade type games that require human
inputs controlling some object, all strategy in TRobots must be complete before the actual game begins. Game strategy is
condensed into a 9S12 assembly program that you design and write. Your software controls a robot tank, see Figure 1, whose
mission is to seek out, track, and destroy other robots, each running different programs. Each robot is equally equipped, and
from 2 to 50 robots may compete at one time. As a game is simulated, events are displayed graphically in real-time. Multiple
simulations will be run in order to eliminate the random occurrences, and the best programmers will be crowned as the team
with the largest total score.

Figure 1. Robots have two tracks and one cannon mounted on a turret.
 TRobots consists of multiple 9S12-based virtual robots, and a battlefield display. The TRobots programs can be
created by any 9S12 assembler or compiler, and the machine codes (S19 records) are run by the TRobots simulator. The
robot programs are run in parallel, giving each robot the same number of 9S12 bus cycles. The virtual robot includes
hardware features to scan for opponents, move, turn, fire cannons, position sensing, and direction sensing. After the 9S12
programs are assembled/compiled, the S19 records are loaded into separate robots. Robots moving, missiles flying and
exploding, and status information are displayed on the screen in real-time during the battle.

512

1023

256

768

y

0 512 1023256 768
x

N

S
EW

Figure 2. The battlefield is a 1024 by 1024 meter square. North is up.

The battlefield, as shown in Figure 2, has a wall surrounds the perimeter, so that a robot running into the wall will
bounce off incurring damage. The lower left corner has the coordinates x = 0, y = 0; the upper right corner has the
coordinates x = 1023m, y = 1023m. The four life-packs are at (980, 982), (41, 511) , (980, 39), and (511, 511) in meters. The
life-packs are about 50 meters by 50 meters. The maximum health is 100%.
 Robots are represented on the field by two characters of their S19 object code files, which must be one letter A to Z
followed by one digit 0 to 3. The S19 files (extension .s19 or .sx) must be loaded into the S19 directory, which must be a

Page 42 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

subdirectory of the directory that hold the game engine, TRobots.exe. The number of robots in the competition is
determined by the existence of object code files: A0.s19, B0.s19, C0.s19, D0.s19, … Z0.s19, A1.s19, B1.s19…
Z3.s19, which are located in the S19 directory.
 For collision purposes, each robot has a bounding-box that is about 4 meters wide, 5 meters long, and 3 meters high
as shown in Figure 3. Robot positions are reported as the center of the box, which is the center of rotation if one track is
moved forward, while the other track is moved backwards. The robot heading is the direction of the left and right tracks.
The turret heading is relative to the robot. E.g., a turret heading of 0 means the turret is facing in the same direction as the
tank.

Figure 3. There are two headings of interest. In this picture, the robot heading is about 340º, and the turret heading is about
45º.

 The offensive weapon is the cannon, which is mounted on a rotating turret. Missiles are fired in the direction of the
turret. Transmitting a frame out the serial port fires a missile. The data value sent determines the launch angle of the missile,
thus affecting the firing distance. There are an unlimited number of missiles that can be fired, but because of the serial baud
rate, there is a maximum rate at which the cannon can be fired. Since the turret can rotate independently from the robot
direction, it can fire any direction, regardless of robot heading.
 The scanner is a sonic ranging device that scans in three sectors (front, left, and right). The scanner is located on the
gun turret, therefore senses enemy robots in the same direction as missiles will be fired. The scanner has four resolutions, as
shown in Table 1 and Figure 4, controlled by the two bits PTM5 and PTM4. The angles are relative to the gun turret. The
values returned by the 10-bit ADC are binary fixed-point with a resolution of 0.25 m.

PTM5 PTM4 Resolution Left Scanner Front Scanner Right Scanner
0 0 5o +7.5o to +2.5o +2.5o to -2.5o -7.5o to -2.5o
0 1 10o +15o to +5o +5o to -5o -5o to -15o
1 0 30o +45o to +15o +15o to -15o -15o to -45o
1 1 120o +180o to +60o +60o to -60o -60o to -180o

Table 1. You can set dynamically set the scanner resolution.

Figure 4. There are scanner resolutions. The front is aligned with the turret (not to scale).

 There are three stepper motors that control the robot. One stepper motor controls the left track, and a second stepper
motor controls the right track. These two motors cause the robot to turn or move. A third stepper motor rotates the gun turret.

30o

front

left right

120o

front

left right

10o

front

left right

 5o

front

left right

Jonathan W. Valvano Page 43

valvano@mail.utexas.edu 01/11/08

Each stepper interface requires four output bits from the computer. The motors can be independently stepped forwards using
a full-step sequence (5,6,10,9,...) or a half-step sequence (5,4,6,2,10,8,9,1,...). Forward stepping causes the robot to move
forward. The motors can be also be stepped backwards using a full-step sequence (9,10,6,5,...) or a half-step sequence
(1,9,8,10,2,6,4,5,...). Backward stepping causes the robot to move backward. The robot will turn about its center (without
translation) if one track is stepped forward and the other is stepped backward. Each motor has 5 possible motions (full-step
forward, half-step forward, none, half-step backward and full-step backward.) Since each motor is independent, there are 25
possible robot motions.
 The smallest distance that the robot can be moved is 1 meter. The smallest angle that the robot can rotate is 1.5o. In
the following figures, the gray arrows represent the robot position and heading before the command, and the black arrow
shows the net motion caused by the command. The gray circle is the center of the robot before the command. The command
notation describes the left and right stepper actions, as listed in Table 2. For example, (F,h) means make the left motor move
a full step forward at the same time as making the right motor move a half step backward.

Code Stepper motor action
F full step forward
H half step forward
0 no change on this stepper
h half step backward
f full step backward

Table 2. There are five possible stepper motor actions.

The legal actions are shown in Figure 5. For example, if the four-bit stepper output is currently 10, and you change it to 6,
then the motor will perform a full-step backwards, shown as bold in the figure. Be careful when mixing full-step and half-
step commands. For example, changing the stepper output from 1 to 8 is illegal. Outputting illegal stepper commands will
cause robot damage. For example, writing 0 (%0000) is an illegal operation.

H H H H H H H
H

5 4 6 2 10 8 9 1

h h h h h h h h

F F F F

f f ff

Figure 5. A state graph showing the legal stepper motor actions.

The first four commands are simple translations, without rotation, as shown in Figure 6.

(H,H) (F,F) (h,h) (f,f)

Figure 6. To move the robot in a straight line step both motors together.

Page 44 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

The second four commands are simple rotations, without translation, as shown in Figure 7. A counter-clockwise (CCW)
rotation adds to the robot compass heading, while a clockwise (CW) rotation decreases the value of the heading. A collision
is possible after a pure rotation because the simulation checks for overlapping volumes. The four full-step motions are listed
in Table 3.

(F,f) (H,h) (f,F) (h,H)

Figure 7. To rotate the robot step the track motors in opposite directions.

Command Left track Right track ∆θ ∆x Robot motion
(F,F) full-step forward full-step forward 0 8 forward
(f,f) full-step backward full-step backward 0 -8 backward
(F,f) full-step forward full-step backward -6 0 turn CW
(f,F) full-step backward full-step forward 6 0 CCW

Table 3. These four full-step commands are sufficient to move the robot.

It takes 15 (F,f) commands to turn the robot 90ο. The four half-step motions are listed in Table 4. It takes 30 (H,h)
commands to turn the robot 90ο.

Command Left track Right track ∆θ ∆x Robot motion
(H,H) half-step forward half-step forward 0 4 little forward
(h,h) half-step backward half-step backward 0 -4 little backward
(H,h) half-step forward half-step backward -3 0 little CW
(h,H) half-step backward half-step forward 3 0 little CCW

Table 4. The half-step commands provide finer control of the robot.

There are a total of sixteen commands that cause a combined rotation and translation. Figure 8 shows four of these more
complex movements. The white circle is the pivot point of a motion that involves both a translation and a rotation. The
combined motions are listed in Table 5. The simulation first rotates the robot by the amount shown in Table 4, then it
translates robot in the direction of the new heading.

(H,0)

pivot

(F,0) (F,h) (H,f)

Figure 8. Four of the sixteen commands that result in both a rotation and a translation.

Jonathan W. Valvano Page 45

valvano@mail.utexas.edu 01/11/08

Command Left track Right track ∆θ ∆x Robot motion
(F,h) full-step forward half-step backward -4.5 1 tiny forward, CW
(H,f) half-step forward full-step backward -4.5 -1 tiny back, CW
(h,F) half-step backward full-step forward 4.5 1 tiny forward, CCW
(f,H) full-step backward half-step forward 4.5 -1 tiny back, CCW
(F,H) full-step forward half-step forward -1.5 3 little forward, little CW
(H,F) half-step forward full-step forward 1.5 3 little forward, little CCW
(f,h) full-step backward half-step backward 1.5 -3 little back, little CCW
(h,f) half-step backward full-step backward -1.5 -3 little back, little CW
(F,0) full-step forward none -3 2 turn CW about right
(0,F) none full-step forward 3 2 turn CCW about left
(f,0) full-step backward none 3 -2 turn CCW about right
(0,f) none full-step backward -3 -2 turn CW about left
(H,0) half-step forward none -1.5 1 little CW about right
(0,H) none half-step forward 1.5 1 little CCW about left
(h,0) half-step backward none 1.5 -1 little CCW about right
(0,h) none half-step backward -1.5 -1 little CW about left

Table 5. There are sixteen commands that result in both a rotation and a translation.

A third stepper motor controls the angle of the gun turret. Forward steps rotate the turret CCW, while backward steps rotate
the turret CW, as shown in Figure 9 and Table 6. The turret angle is relative the robot heading. The absolute turret angle is
the sum of the robot heading and the turret angle.

(F) (H) (f) (h)

Figure 9. A third stepper motor independently controls the turret angle.

It takes 36 (F) commands to rotate the turret a complete 360 o

Command Stepper motor action Change in turret angle
(F) full step forward +10o
(H) half step forward +5o
(h) half step backward -5o
(f) full step backward -10o

Table 6. The third stepper controls the turret angle.

 Analog status parameters provide feedback to your software, indicating results of the scanner. The status of your
robot includes the percent damage, the location on the battlefield, the heading of the robot, and the heading of the gun turret.
There are three ultrasonic range sensors to determine the distance to the closest enemy robot. These sensors are interfaced to
the ADC.
 A robot is considered dead when the health drops to 0%. A collision occurs when the bounding boxes of two objects
overlap. Damage to health is inflicted as follows:

1% - collision caused by another robot running into you.
5% - collision into another robot or into a wall.
10% - a missile hitting your robot.
10% - a software bug or illegal stepper output.

A collision will cause the robot to bounce, changing directions after the impact. Damage is cumulative; however, a robot does
not loose any mobility, or fire potential at high damage levels. In other words, a robot at 1% health performs equally well as a
robot with no damage. There are four life-packs (circular targets) in the battlefield. Rolling over the pack grants you a 50%

Page 46 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

increase in health, but each pack may be used only once per run. The maximum health is 100%. The life-pack triggers are
50m by 50m squares. For purposes of the competition, a score is maintained, separate from the health
 20 point bonus when one of your missiles hits other robot
 1 point penalty for launching a missile
 5 point penalty when your robot is hit by a missile
 5 point penalty when your robot has a collision.
A robot-robot collision causes both robots to loose points, but the robot initiating contact looses more health.
Analog sensors connected to 9S12C32 PAD0 to PAD7
The numbers in parentheses are 10-bit right-justified ADC values.
Channel 0: Current x-position of the center of robot (the pivot point). Near 0V (0) means the robot hit the West wall. Near
5V (1023) means the robot hit the East wall. See Figure 2.

Channel 1: Current y-position of the center of robot (the pivot point). Near 0V (0) means the robot hit the North wall. Near
5V (1023) means the robot hit the South wall. See Figure 2.

Channel 2: Current compass heading of the robot. The compass system is oriented so that due East (right) is 0V, 1.25V (256)
is North, 2.5V (512) is West, 3.75V (768) is South. Just below due East is 5V (1023). See Figure 10.

Channel 3: Current heading of the turret/cannon relative to the robot. The heading is defined so that straight ahead (same
direction as the robot is 0V, 1.25V (256) is to the left, 2.5V (512) is directly behind, 3.75V (768) is to the right. Just a tiny bit
to the right is 5V (1023).

Channel 4: Results of the left scanner is the range to closest enemy robot within a cone-shaped volume to the left of the
canon. 5V (1023) means no enemy robot within 256 meters. 2.5V (512) means 128 meters to the enemy robot.

Channel 5: Results of the front scanner is the range to closest enemy robot within a cone-shaped volume in the direction of
cannon turret heading. 5V (1023) means no enemy robot within 256 meters. 2.5V (512) means 128 meters to the enemy
robot.

Channel 6: Results of the right scanner is the range to closest enemy robot within a cone-shaped volume to the right of the
canon. 5V (1023) means no enemy robot within 256 meters. 2.5V (512) means 128 meters to the enemy robot.

Channel 7: Current robot damage. 5V (1023) means full life and 0V (0) means dead.

It is possible to sample all 8 sensors with one 6812 command using 8-channel sequence length and multiple channel mode.
However, continuous mode is not supported.
 384 256 128
 \ | /
 \ | /
 512 --- x --- 0
 / | \
 / | \
 640 768 896
Figure 10. Compass directions are measured in degrees from East.

Two Stepper Motors Control Robot Motion
 PT7-PT4 Right Track Stepper Motor
 PT3-PT0 Left Track Stepper Motor

Sensor Resolution
 PM5-PM4 00,01,10,11 is 5, 10, 30, 120 degrees respectively
Gun Control
 PM3-PM0 Gun Turret Direction Stepper Motor
 PS1 serial port, send a serial output frame to shoot a missile
 9600 bits/sec baud rate, 1 start, 8-bit data, 1 stop frame protocol
 8-bit data specifies the missile speed 0 to 255, range = about 0.7meters*data

Jonathan W. Valvano Page 47

valvano@mail.utexas.edu 01/11/08

An empirical experiment yielded the data in Table 7 at MissileSpeed=10.

Firing Strength Range of targets that hit (very rough estimate)
100 80?? to 104 meters (?? Could be closer)
150 96 to 124 meters
200 112 to 160 meters

Table 7. The target robot is oriented sideways, lined up exactly at the correct firing angle.

Programming limitations
The 9S12C32 memory map and the following list of I/O ports are simulated. RTI and eight output compare interrupts are
allowed; other interrupts are not allowed. The TCNT rate can not be changed.
DDRM: equ $0252 ; Port M Data Direction Register 6 bits
DDRT: equ $0242 ; Port T Data Direction Register
PTM: equ $0250 ; Port M I/O Register 6 bits
PTT: equ $0240 ; Port T I/O Register
TIOS: equ $0040 ; Timer Input Capture/Output Compare Select
TCNT: equ $0044 ; Timer Count Register
TSCR1: equ $0046 ; set bit 7=1 to enable TCNT
TFLG1: equ $004E ; Main Timer Interrupt Flag 1
TIE: equ $004C ; Timer Interrupt Enable Register
TC0: equ $0050 ; Timer Output Compare Register 0
TC1: equ $0052 ; Timer Output Compare Register 1
TC2: equ $0054 ; Timer Output Compare Register 2
TC3: equ $0056 ; Timer Output Compare Register 3
TC4: equ $0058 ; Timer Output Compare Register 4
TC5: equ $005A ; Timer Output Compare Register 5
TC6: equ $005C ; Timer Output Compare Register 6
TC7: equ $005E ; Timer Output Compare Register 7
SCIBD: equ $00C8 ; 16-bit SCI Baud Rate Register
SCICR2: equ $00CB ; SCI Control Register 2
SCIDRL: equ $00CF ; SCI Data Register Low
SCISR1: equ $00CC ; SCI Status Register 1
ATDCTL0: equ $0080 ; ATD Control Register 0
ATDCTL1: equ $0081 ; ATD Control Register 1
ATDCTL2: equ $0082 ; ATD Control Register 2 no interrupts, no fast clear
ATDCTL3: equ $0083 ; ATD Control Register 3
ATDCTL4: equ $0084 ; ATD Control Register 4
ATDCTL5: equ $0085 ; ATD Control Register 5 no SCAN mode
ATDDR0: equ $0090 ; A/D Conversion Result Register 0
ATDDR1: equ $0092 ; A/D Conversion Result Register 1
ATDDR2: equ $0094 ; A/D Conversion Result Register 2
ATDDR3: equ $0096 ; A/D Conversion Result Register 3
ATDDR4: equ $0098 ; A/D Conversion Result Register 4
ATDDR5: equ $009A ; A/D Conversion Result Register 5
ATDDR6: equ $009C ; A/D Conversion Result Register 6
ATDDR7: equ $009E ; A/D Conversion Result Register 7
ATDSTAT0: equ $0086 ; A/D Status Register 0
ATDSTAT1: equ $008B ; A/D Status Register 1

Enhanced 9S12C32 Memory map
Internal RAM $3800-$3FFF ; 2K globals and stack
Shared RAM $8000-$BFFF ; 16K shared space with your team (not active)
Internal EEPROM $4000-$7FFF,$C000-$FFFF ; 32K for constants and program

Stack overflow and stack underflow will cause memory errors. The PLL loop can not be altered to change the bus cycle
time. Table 8 shows the complete list of 6812 simulation faults (bugs in your software) that can occur. Each fault will cause a
10% loss of health.

Page 48 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

 10 op code failure
 11 Port E is read only
 12 PORTAD is read only
 13 ADR's are read only
 14 ATDSTAT is input only
 15 ATDCTL2 bits 6-1 are not implemented
 16 ATDCTL3 FIFO mode is not implemented
 17 ATDCTL5 scan mode not implemented
 18 SCIBDH bits 7,6,5 not implemented
 19 Only SCICR1=0 mode implemented
 20 TCIE, ILIE, RWU, SBK not implemented
 21 SCISR1 is read only
 22 SCISR2 is read only
 23 SCI 9-bit data mode not implemented
 24 SCI receiver not implemented
 25 Track stepper motor fault
 26 Turret stepper motor fault
 27 Lost data, write to TDR when TE=0
 28 Lost data, write to TDR when TDRE=0
 29 Read from unimplemented I/O port
 30 Write to unimplemented I/O
 31 Read from uninitialized RAM
 32 Read from uninitialized External RAM
 33 Read from unprogrammed EEPROM
 34 Read from unprogrammed ROM
 35 Read from undefined address
 36 Write to EEPROM
 37 Write to ROM
 38 Write to undefined address
 39 Executed unimplemented opcode
 40 Executed unimplemented indexed mode
 41 SCI baud rate mismatch
 42 TCNT is read only
 43 Tank is outputting to the track steppers too fast.
Table 8. Each time of these program errors occur there will be a 10% loss of health.

Esc Menu
Space Pause/Resume
Arrow keys Camera Position
PageUp PageDown Camera Angle
F1 Help
F5 Change Screen Resolution
F6 Screenshot
F7 Toggle camera mode
F8 Switch to next player
F12 Toggle sound/music
F11 Abort this run, and start another run
F10 Exit

Table 9. Hot keys available during TRobot simulation.

Jonathan W. Valvano Page 49

valvano@mail.utexas.edu 01/11/08

Schedule of Events, Spring 2008
Lab 9 is the initial design of tank motion
0) Download the lasted version of TRobot. Find a computer with DirectX 9.0c or later, unzip the package and test the
system. You can determine the DirectX version by executing DxDiag from the command line. You should use TExaS to
develop the software, creating S19 object files, and use the TRobot simulator to run the battle.

http://users.ece.utexas.edu/~valvano/EE319K

1) Form a group. You may work alone, or in a group of two. Email your TAs the names of all group members. You do not
have to have the same TA. They will email you back a code name, which will consist of one letter (A-Z) followed by one
number (0,1,2,3). For example, if you are team X1, you will create your solution as file X1.RTF.

 Your tank will be run with 24 other tanks. The initial locations of all 25 tanks will random. Your goal is to move
your tank to the center location (on or near location 512, 512) without hitting any walls or hitting other tanks. The other 24
tanks will not move or fire. In lab 9, your tank is not allowed to fire missles. You will demonstrate your Lab 9 solution to
your TA running it 5 times. You will get full credit on the performance part of Lab 9 if your tank can move to the center and
stop every time without hitting any walls or hitting any other tanks. No tank should be placed at the center location initially.

Lab 10 is the TRobot competition
2) Practice. TBA: At the start of each hour, the TA will collect S19 records from whoever is present and run them together in
a practice competition. There are no formal lab demonstrations required for lab 10.

3) Program submission. Contact your TA for due dates: You must email your TA with your RTF (source code) file
attached. For example, if you are team X1, then send your TA your file X1.RTF. Place the following phrase in the email title
"EE319K TRobot submission". Make sure it assembles in TExaS. The TA will email you an acknowledgement. If you do
not get the acknowledgement, put your RTF and S19 on a USB drive and bring it to your TA. Great confusion and sadness
will occur if you send your TA two copies of your program.

4) Preliminary Contest. Contact your TA for due dates. There will be about 10 runs of 250ms duration. The top 50%, as
scored by the total points of all the runs, will be invited back for the final competition.

5) Program submission. Contact your TA for due dates: If you want, you may email your TA with an updated RTF (source
code) file attached. Place the following phrase in the email title "EE319K TRobot submission". The TA will email you an
acknowledgement. If you do not get an acknowledgement, put your RTF and S19 on USB drive and bring it to the finals.

6) Final Contest Contact your TA for due dates: Note: there will be about the same number robots in the battlefield.

The grading scale for the TRobot Lab, which will count as two lab grades, is as follows
100 >50% scoring rank during preliminaries and software has good structure and style.
90 >50% scoring rank during preliminaries and software has poor style.
85 25-50% scoring rank during preliminaries and software has good structure and style.
75 25-50% scoring rank during preliminaries and software has poor style.
75 0-25% scoring rank during preliminaries and software has good structure and style.
50 0-25% scoring rank during preliminaries and software has poor style.

The Trobot.ini file allows you to change many parameters of the battle. The parameters are grouped into three categories.
The first category simply affect on-screen displays and have no effect on the actual battle conditions. The student is free to
adjust these parameters however they wish. The tanks are numbered A0,B0,C0… For example, Player=27; specifies the
chase camera follows tank B1. The camera view can be adjusted during the game, but the Camera parameter specifies the
initial view. The Show parameters determine whether or not that particular variable is visible on the screen during battle.
There are two fonts available for the display. BigFont=1 is appropriate for the in-class competition, however BigFont=0
is appropriate for debugging on your personal computer. If you set your tank to the player, then the simulation will halt every
time your software executes a stop instruction. You can restart simulation by pressing the space bar.
Player=0; // Tank A0 is has cameras attached
Camera=5; // 5=panoramic spin, 4=manual, 2=orbit, 0=1st
ShowX=0;
ShowY=0;

Page 50 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

ShowDir=0;
ShowTurret=0;
ShowLeft=0;
ShowCenter=0;
ShowRight=0;
ShowHealth=1;
ShowPC=0;
ShowRegX=0;
ShowRegY=0;
ShowRAM=0;
ShowScore=1;
BigFont=1; // 0 is little font, 1 for large green font
PauseBetweenGames=0; // execute all simulations without pausing
StopWillPause=1; // executing stop will pause for the Player
TankCreateLogFile=1; // save results in logFile.txt

 The second set of parameters will be determined by the instructor, but you can adjust these parameters during initial
debugging for your convenience. However, the values of these parameters will be set by the instructor.
NumberOfBattles = 10; // competition consists of 10 battles
BattleTime = 150; // each battle is 150 ms simulation time

This third set of parameters is determined by the instructors of the course and should not be modified by the student. One
parameter the instructor can modify is the MissileSpeed. The missile speed affects both the speed and range of a missile.
A nonzero value stored into the parameter MinStepTime forces the tank to wait in between outputs to the track stepper
motors. If the tank tries to move too fast, it will throw “43” errors and loose 10% health for each violation (motors burn up).
A MinStepTime value of 0 means there is no speed limit. The BaudRate specifies the SCI baud rate, thus it determines
the maximum rate at which the tank can fire. You should output to both track steppers simultaneously, because after writing
to PTT, you have to wait another MinStepTime cycles before you can write to PTT again.
MissileSpeed=25; // initial velocity of missiles (5 to 100)
MinStepTime=700; // bus cycles between outputs to PTT
BaudRate=2400; // SCI rate in bits/sec

Jonathan W. Valvano Page 51

valvano@mail.utexas.edu 01/11/08

How to develop assembly programs using Metrowerks/Tech Arts board

 First, you need to install Metrowerks CodeWarrior for HC(S)12. You can go to
http://users.ece.utexas.edu/~valvano/S12C32.htm
for directions on how to download and install Metrowerks

A) To open an existing Metrowerks project
1) Start Metrowerks CW12 CodeWarrior for HC(S)12
2) Execute File->Open, navigate to an existing *.mcp file, and click "OK"

B) Creating a new 9S12DP512 assembly project
 First, you will execute File->New, select HC(S)12 NewProjectWizard, and choose a name and place for the
project, as shown in Figure 1. Next, choose the 9S12DP512 microcontroller, as shown in Figure 2.

Figure 1. First dialog creating a new project. Figure 2. Second dialog creating a new project.

Next, you will select Assembly and deselect C and C++. For simple programs, you should select Absolute Assembly, as
shown in Figure 4.

Figure 3. Third dialog creating a new project. Figure 4. Fourth dialog creating a new project.

Because we have no BDM hardware, you should select Motorola Serial Monitor Hardware Debugging, as shown in
Figure 5.

Page 52 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

Figure 5. Fifth dialog creating a new project.

In the project window, double click the main.asm name to open the source file.

C) How to run Metrowerks on the Real 9S12DP512 board
Do this once
1) Connect PC-COM1 to the 9S12DP512 DB9 connector (any PC COM port will be ok),
2) Place the Run/Load switch on the 9S12DP512 board in Load mode
3) Connect power to 9S12DP512 board.
4) Touch the reset switch on the board

Figure 6. Photograph of the TechArts 9S12DP512 hardware setup.

For each edit/compile/run cycle for software that does not use the SCI
1) In Metrowerks, perform editing to source code
2) In Metrowerks, compile/Link/Load
Execute Project->Debug
3) Click the green arrow in the debugger to start. Runs at 24 MHz.

Jonathan W. Valvano Page 53

valvano@mail.utexas.edu 01/11/08

For each edit/compile/run cycle for software that does use the SCI0
1) set the Run/Load switch to Load mode, push the reset button on the 9S12DP512 board
2) execute Project->Debug (compiles and downloads code to 9S12DP512
3) quit MW debugger once programming complete. Quitting the debugger will release the COM port.
4) start a terminal program (like HyperTerminal)
specify proper COM port, 38400 bits/sec, no flow control that matches the 9S12 SCI initialization
5) set the Run/Load switch to Run mode and push the reset button on the 9S12DP512 board. The 9S12DP512 runs at 8 MHz.
6) when done, quit terminal program. Quitting the terminal program will release the COM port.

To run in embedded mode
1) disconnect the serial cable if not needed
2) set the Run/Load switch to Run mode,
3) apply power to the 9S12DP512 board

The 9S12DP512 runs at 8 MHz if you do not modify the PLL.
You can adjust the E clock rate by configuring the PLL

Add this code to your project, we you wish to run at 24 MHz in both Run and Load modes
SYNR equ $0034 ; CRG Synthesizer Register
REFDV equ $0035 ; CRG Reference Divider Register
CRGFLG equ $0037 ; CRG Flags Register
CLKSEL equ $0039 ; CRG Clock Select Register
PLLCTL equ $003A ; CRG PLL Control Register

;********* PLL_Init ****************
; Set PLL clock to 24 MHz, and switch 9S12 to run at this rate
; Inputs: none
; Outputs: none
; Errors: will hang if PLL does not stabilize
PLL_Init
 movb #$02,SYNR ; OSCCLK is Crystal Clock Frequency
 movb #$01,REFDV
; PLLCLK = 2 * OSCCLK * (SYNR + 1) / (REFDV + 1)
 clr CLKSEL ; PLLCLK of 24 MHz
 movb #$D1,PLLCTL ; Clock monitor, PLL On, high bandwidth filter
 brclr CRGFLG,#$08,* ; wait for PLLCLK to stabilize.
 bset CLKSEL,#$80 ; Switch to PLL clock
 rts

Page 54 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

68HC12 Die Photo

Jonathan W. Valvano Page 55

valvano@mail.utexas.edu 01/11/08

How to develop C programs Metrowerks/Tech Arts 9S12DP512 board
Installing Metrowerks
CodeWarrior Version 3.1 or later will compile programs we need for EE319K/EE345L/EE345M. For version 3.1 you should
use their 12K free educational license. There is an installer for Version 3.1 on the CD accompanying the second edition of the
EE345L/EE345M textbook.
Follow these steps to install the Special edition of Metrowerks CodeWarrior Version 4.6 (32K free educational license)
1) http://www.freescale.com/
2) click "CodeWarrior Development Tools" under Products
3) click "HCS12(X)" under CodeWarrior Products
4) scroll down and click "Special edition" for the Special Edition Evaluation for CodeWarrior Development Studio for
HCS12X Microcontrollers V4.6 (or whichever version is latest)
5) Register as a new user (if you have registered before, just log in)
 email must be correct
 decide whether or not you want email from Metrowerks
6) Fill in the page with "project details" stating you are a student taking a class, fill in all required fields
7) Download CW12_V4_6.exe (335 MB) and install (the special edition does not require downloading a separate license)
8) Download instructions and starter projects from my web site at
http://users.ece.utexas.edu/~valvano/metrowerks/

A) To open an existing Metrowerks project
1) Start Metrowerks CW12
2) Execute File->Open, navigate to an existing *.mcp file, and click "OK"

B) How to configure create a new Metrowerks project
1) Start Metrowerks CW12 2) Execute File->New, click "Project" Tab

 select "HC(S)12 New Project Wizard"
 specify the "Project name"
 verify its "Location", click "OK"

Page 56 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

 3) Select the derivative you want to use
 “MC9S12DP512”, click "next"

4) Choose the set of languages supported
 select "C", click "next"

 5) Do you want to create a setup for PC-lint
 select "no", click "next"

6) Select the floating point format supported
 select "None", click "next"

7) Which memory model should be used?
 select "Small"
 click "next"

8) Please choose the connections you want
 select "Serial Monitor Hardware Debugging"
 click "Finish"

Jonathan W. Valvano Page 57

valvano@mail.utexas.edu 01/11/08

9) Create or copy program files *.c and *.h
 place them into the "Sources" directory of your project

10) Add the necessary C files to project

 click on Sources in the "mcp" window
 right click and execute "Add Files..."
 “click dot on” in the field associated all C source files under the "bug" icon

Metrowerks adds the file datapage.c, which is not needed. So, this file can be deleted from the project.

13) Change compiler/linker options
 click the right-most toolbar ICON called "Simulator settings"
 click "Compiler for HC12" choice
 click "Options"
 click "Output" tab
 select "Allocate CONST objects in ROM" and "Generate Listing File"

 click "Linker for HC12" choice
 click "Options"
 click "Output" tab
 select "Generate S-Record" and "Generate a map file"

Page 58 Introduction to Embedded Systems: Interfacing to the Freescale 9S12

 01/11/08

C) How to run Metrowerks C code on the Real 9S12DP512 board

Do this once
1) Connect PC-COM1 to the 9S12DP512 DB9 connector,
2) Place the Run/Load switch on the 9S12DP512 board in Load mode
3) Connect power to 9S12DP512 board using the wall wart that came with the kit.
4) Touch the reset switch on the 9S12DP512 board

For each edit/compile/run cycle for software that does not use SCI
1) In Metrowerks, perform editing to source code
2) In Metrowerks, compile/Link/Load
 Execute Project->Debug
3) Click the green arrow in the debugger to start. Runs at 24 MHz.

For each edit/compile/run cycle for software that does use SCI
1) set the Run/Load switch to Load mode, push the reset button on the 9S12DP512 board
2) execute Project->Debug (compiles and downloads code to 9S12DP512
3) quit MW debugger after programming is complete. Quitting the debugger will release the COM port.

Jonathan W. Valvano Page 59

valvano@mail.utexas.edu 01/11/08

4) start a terminal program (like HyperTerminal)
 specify proper COM port, 38400 bits/sec, no flow control (match the baud rate of your 9S12 software)
5) set the Run/Load switch to Run mode and push the reset button on the 9S12DP512 board.

The 9S12DP512 runs at 8 MHz if you do not modify the PLL.
You can adjust the E clock rate by configuring the PLL

6) when done, quit terminal program. Quitting the terminal program will release the COM port.

To run in embedded mode
1) disconnect the serial cable if not needed
2) set the Run/Load switch to Run mode,
3) apply power to the 9S12DP512 board

The 9S12DP512 runs at 8 MHz if you do not modify the PLL.
You can adjust the E clock rate by configuring the PLL

Add this code to your project, we you wish to run at 24 MHz in both Run and Load modes
//********* PLL_Init ****************
// Set PLL clock to 24 MHz, and switch 9S12 to run at this rate
// Inputs: none
// Outputs: none
// Errors: will hang if PLL does not stabilize
void PLL_Init(void){
 SYNR = 0x02; // OSCCLK is 8 MHz Crystal Clock Frequency
 REFDV = 0x01;
// PLLCLK = 2 * OSCCLK * (SYNR + 1) / (REFDV + 1)
 CLKSEL = 0x00; // PLLCLK of 24 MHz with 8 MHz crystal
// Meaning for CLKSEL:
// Bit 7: PLLSEL = 0 Keep using OSCCLK until we are ready to switch to PLLCLK
// Bit 6: PSTP = 0 Do not need to go to Pseudo-Stop Mode
// Bit 5: SYSWAI = 0 In wait mode system clocks stop.
// But 4: ROAWAI = 0 Do not reduce oscillator amplitude in wait mode.
// Bit 3: PLLWAI = 0 Do not turn off PLL in wait mode
// Bit 2: CWAI = 0 Do not stop the core during wait mode
// Bit 1: RTIWAI = 0 Do not stop the RTI in wait mode
// Bit 0: COPWAI = 0 Do not stop the COP in wait mode
 PLLCTL = 0xD1;
// Meaning for PLLCTL:
// Bit 7: CME = 1; Clock monitor enable - reset if bad clock when set
// Bit 6: PLLON = 1; PLL On bit
// Bit 5: AUTO = 0; No automatic control of bandwidth, manual through ACQ
// Bit 4: ACQ = 1; 1 for high bandwidth filter (acquisition); 0 for low (tracking)
// Bit 3: (Not Used by 9s12c32)
// Bit 2: PRE = 0; RTI stops during Pseudo Stop Mode
// Bit 1: PCE = 0; COP diabled during Pseudo STOP mode
// Bit 0: SCME = 1; Crystal Clock Failure -> Self Clock mode NOT reset.
 while((CRGFLG&0x08) == 0){ } // Wait for PLLCLK to stabilize.
 CLKSEL_PLLSEL = 1; // Switch to PLL clock
}

