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* Motivation
- A bit of literature/philosophy
- Why now?
* Observations
- Different perspectives on multiscale modeling and analysis
- Basic definition for classical EM analysis
- Are there multiscale problems in classical EM analysis?

 Proposed Nomenclature

- Major problem with basic definition
- Proposed categories for multiscale problems

« (Conclusion
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What’s in a name? That which we call a rose by any other

name would smell as sweet.

(et I, degne I, Romeo & Juligt, William ohakegspgeare)
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What’s in a name? That which we call a rese by any other

name would smell-as-sweet.

(et I, degng I, Romeo & Juligt, William ohakgspgeare)

» Reasons to use names

+ Speed up communication
+ Improve understanding
+ Ease thinking
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"Tis but thy name that is my enemy.
Thou art thyself, though not a Montague.
What’s Montague? It is nor hand, nor foot,

Nor arm, nor face, nor any other part

Belonging to a man. O, be some other name!

What’s in a name? That which we call a rose by any other

name would smell as sweet.

(et I, degng I, Romeo & Juligt, William ohakegspgeare)

» Reasons to use names

+ Speed up communication
+ Improve understanding
+ Ease thinking
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OBSERVATIONS

Different Perspectives on Multiscale Modeling and Analysis
Basic Definition for Classical EM Analysis

Are there Multiscale Problems in Classical EM Analysis?
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S What is
./It’s a\ multiscale
| | m ?

odeling/analysis

!
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LT
a Snake!
" . -
Original cartoons from: e Image of Michelangelo statue Il Pensieroso at
cviteacher.wordpress.com/2014/04/25/169/ Lorenzo de’Medici tomb from:

knowyourmeme.com/photos/415209-computer-reaction-faces https://michelangelobuonarrotietornato.com/tag/duca-durbino/
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TN What is
/ It’sa multiscale
| | m ?

odeling/analysis

N«

[It's whatever my
| code can do!

e g
It's ) By
a Snake! ——
Original cartoons from: ——— Image of Michelangelo statue Il Pensieroso at
cviteacher.wordpress.com/2014/04/25/169/ Lorenzo de’Medici tomb from:

knowyourmeme.com/photos/415209-computer-reaction-faces https://michelangelobuonarrotietornato.com/tag/duca-durbino/
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Simulation - Based

Engineering Science

Revolutionizing Engineering Science
through Simulation

May 2006

Report of the National Science Foundation
Blue Ribbon Panel on
Simulation-Based Engineering Science

..(
@:*
. P

NSF Blue-Ribbon Committee on
Simulation-Based Engineering Science,
May 2006:

— SBES is the discipline that provides the

scientific and mathematical basis for
the simulation of engineered systems.

Formidable challenges stand in the way
of progress in SBES research. These
challenges involve resolving open
problems associated with multiscale and
multi-physics modeling, real-time
integration of simulation methods with
measurement systems, model validation
and verification, handling large data, and
visualization.

Formidable obstacles remain in linking
highly disparate length and time scales
and bringing together the disciplines
involved in researching simulations
methods...
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The View from Material Science N
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Length Scale

“To calculate materials properties, fundamental  “Traditionally different disciplines focus on
information is obtained from the QM level, and  different length scales. Multiscale modeling of
then used to train the ReaxFF level, which in  materials across the length scales requires...a
turn is used to train ordinary FF and mesoscale = seamless integration of the models on different
levels to inform the macroscale simulations length scales into one coherent multi-scale
needed for engineering design” modelling framework”

from: from:
http://materialstechnology.tms.org/TECarticle.asp?articlelD=1480 http://materialstechnology.tms.org/TECarticle.asp?articlelD=1480
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Molecalar Mesoscopic

“An array of complementary experimental
techniques is beln? used to characterize
biomass at different length scales...different
theoretical approaches are being developed
and applied to interpret experimental data at
each length scale...Coarse graining ... used to
integrate individual theoretical models that
traverse length scales...”

from:
http://pubs.rsc.org/en/Content/ArticleHtmI/2011/EE/c1ee01268a

Multiscale interactions produce emergent [/7 -RE

phenomena
A

101?

Time, s

10

CFDR Jl”'i""‘
101 Length, m 107

“One of the things that makes biolo_%y lo)
complicated is that processes at different
scales ranging from the molecular to whole
ammals” are continually interacting with each
other...

from:
http://www.kurzweilai.net/robot-biologist-solves-complex-problem-from-s
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Package interconnects
(100 pzm)

Figure 1: Multiscale package-to-chip structure.

v x B, 1) = - 2810
o1
v X I_{)<?7 t) - % jcond(_)’ t) —l_ _)lmp(_: t)

Figure 2. (Top lefi) XY lines. (Top right) Intercomnects and package.

é(?, t) — H(Fa t) * ﬁ(?) t) (Bottom) Buases :mr! motherboard. ﬂt n:!ul!ilsulr u!’ dinrn!iu‘m:t l::isu im
. . an integrated circuit and computer circuit. The devices and XY lines are
D(F, t) = 5(77', t) * E(?7 t) of nanometer dimension. The package and interconmects are of mm
5 . dimension, and the buses and board are of em dimension. Maxwell's
(77, t) = 0‘(77, t) * E(F, t) equations hold true in these length scales differing in seven erders of
cond magnilude. (images from Wikipedia and Intel)
from:

L. Tobon, J. Chen, J. Lee, M. Yuan, B. Zhao, and Q. H. Liu, f/(/og]'oh ol “Fast and o multiscalo eloct .
“Progress in multiscale computational electromagnetics in time C e\_/ve al. ras ::n accurate multiscale electromagnetic
domain,” 2013 framework: an overview,” 2013.
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OBSERVATIONS

- Different Perspectives on Multiscale Modeling and Analysis
- Basic Definition for Classical EM Analysis

- Are there Multiscale Problems in Classical EM Analysis?
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 Definition
A problem that has important EM field variations in the domain of analysis at

multiple time or length scales
* Presumes: Maxwell’s equations (or their simplified forms) are governing

at all the relevant scales <= otherwise, “multiphysics”
* Undefined: Important? Domain of analysis? <= Application & model dependent
* Presumes: Appropriate scales are used
» Categories

Multi-time-scale problem (stiff problems) => often (not always) can be avoided
Multi-length-scale problem => focus here

» Appropriate scales?
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lassical/Macr ic EM Analysis S’
* Definition

A problem that has important EM field variations in the domain of analysis at
multiple time or length scales

* Presumes: Maxwell’s equations (or their simplified forms) are governing

at all the relevant scales <= otherwise, “multiphysics”

* Undefined: Important? Domain of analysis? <= Application & model dependent
* Presumes: Appropriate scales are used
» Categories

Multi-time-scale problem (stiff problems) => often (not always) can be avoided
Multi-length-scale problem => focus here

» Appropriate scales?

Length scale: A single ruler with 11 major/101 minor tick marks
1-cm scale (10-cm ruler) 1 I =
.1 -1 —- .1 e e B 4 [ B 7 2 9 1udl;:1-- _

’ L?m sca(l)e] (?g;?n rljlemr) M NCHTA R AR L P IR e
0.1-10] mmF0.1 mm i

[ ] i
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ppropriate Length Scales oY,

» Minor issue: Any length scale can be used to describe any field variation
Scales smaller than the “appropriate length scale” require >>1 ruler

Scales larger than the “appropriate length scale” require >>101 tick marks

Very large features!?

~10° rulers with 1-nm ticks Appropriate length scale

1-m scale (10-m ruler)

}m
%10 cm

Very small features!?
One 1-Gm ruler with
~10'0 ticks
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» Minor issue: Any length scale can be used to describe any field variation
Scales smaller than the “appropriate length scale” require >>1 ruler

Scales larger than the “appropriate length scale” require >>101 tick marks

Very large features!?

~10° rulers with 1-nm ticks Appropriate length scale

1-m scale (10-m ruler)

}m
%10 cm

* Minor issue: Any multi-scale field variation can be described with one scale

¢ E!I1Ocm

Very small features!?
One 1-Gm ruler with
~101'0ticks

Single scale!?
One 10-m ruler with
1001 tick marks

Single scale!? # of appropriate length
~100 1-m rulers i scales: 2
i T W 1-m (One 10-m ruler)
SR S SN S 10-cm (One 1-m ruler)
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OBSERVATIONS

Different perspectives on multiscale modeling and analysis
Basic definition for classical EM analysis

Are there multiscale problems in classical EM analysis?



UNIVERSITY OF TEXAS AT AUSTIN
LECTRICAL & COMPUTER ENGINEERING

Source of Multiscale Problems in
Classical/Macroscopic EM Analysis

Remember that all models are wrong; the practical

question is how wrong do they have to be to not be

useful. (p. 74)

Essentially, all models are wrong, but some are

useful. (p. 424)

(G. E. P. Box and N. R. Draper)




Higher Fidelity Models .a{;);\
=> Multiscale Problems \m-f

(Over?)Simplified model
- Simple fracture

- Circular conductive disc,
uniform features/mesh
- Borehole not modeled

Refined model
- Simple fracture + borehole model - Complex fracture + borehole model

from:
K. Yang, A. E. Yilmaz, IEEE Trans. Geosci. Remote Sensing, Aug. 2015.
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=> Multiscale Proble

Higher-fidelity models

(Over?)simplified model
Multilayered head-sized sphere +
Hertzian Dipole

* Jimp

Refined models

AustinWoman +
Hertzian Dipole
J.

imp

AustinMan +Half-
Wavelength Dipole

Half wavalangth

F. Wei and A. E. Yilmaz, in
Proc. ICEAA, Sep. 2012.

.
S %%me'ﬁj

AustinMan +
AMF Antenna

AustinWoman +
Implanted Sensor

)
~
ity

[E(r,t)| (dB)

1.161e+01

o

o

PR L T —
o

-45
-4.839e+01

J. W. Massey and A. E.
Yilmaz, in Proc. URSI NRSM,
Jan. 2016.

J. W. Massey et al., in Proc.
EuCAP, Apr. 2016.
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Proposed Nomenclature

- Major problem with basic definition

- Proposed categories for multiscale problems
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» Multiscale problem

A problem that has important
EM field variations in the
domain of analysis at
multiple time or length scales

\’\/ # of appropriate length scales
, to resolve

p%Lgt’SCa/e important field variations
IGInS? in the domain of analysis

* Major problem: Not enough information about
- What factors determine field variations?
- Are all (2, 3, ...)-scale problems equally difficult?
- What is a single-scale EM problem anyway?



P CE Multiscale Problems in ...-;‘f«.;:“*~Wi

lassical/Macr ic EM Analysis S’

» Three important factors to consider

- Structure length scales
- Primary (impressed) source time rate of change

- Background length scales @
) z

zk+1

’Jimp %
(Ek—i—l’ Iukﬂ) o

(5,4, @ %y
CRNTAN % P

Gt

K-1
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» Multiscale structure
A structure that has important

multiscale features in the domain of
structure : :
analysis at multiple length
' scales
homogeneous —————— 1} Of appropriate length scales
background to resolve

important structure features
in the domain of analysis
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Feature lengths relative to . _

background wavelength Frequency regime

Field variations dictated by
structure features (LF),
background wavelength (HF),
or combination (MF)

High frequency multiscale
structure

Mixed frequency

Low frequency

homogeneous # of appropriate length scales
background to resolve

important structure features
in the domain of analysis
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Feature lengths relative to . .
background wavelength Typ.e 1 multiscale problem
High frequency multiscale 1c: High-frequency

1a: Low-frequency

Two-scales :One scale for
structure, one for fields

structure

Mixed frequency
Low frequency

homogeneous # of appropriate length scales
background to resolve

important structure features
in the domain of analysis

£ -
40 T T T T T T T T T T soks !
——— MLFMA e 60re .
PO i, g BT
] 4012 o Lj‘ &
2 —
) g i H
T 20z —
- J— B om . d = 2695.43)\
E - 2 0 ’ ﬁti'leraliu::'(J e
d Il
= <
o) . L
2 <% B. Michiels,
“= .
>0 J. Fostier,
|. Bogaert,
—60} D. D. Zutter,
IEEE Trans.
g - | I L L I L L L i L —R0 . . L s 1 )
0530 e 80 120 150 180 210 240 270 300 530 360 0 60 120 180 240 300 360 Antennas
Bistatic Angle angle 6(°) Propag.,
. . o ... . . Feb.2015.
O. Ergul, L. Gurel, Proc. IEEE, Feb. 2013. Fig. 4. The normalized radiation pattern for a PEC “Thunderbird” discretized

in over 2.5 billion unknowns. Inset: convergence behavior over 150 iterations.
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Feature lengths relative to . .
background wavelength Type 1 multiscale problem

High frequency multiscale 1c¢: High-frequency

. structure 1a: Low-frequency
Mixed frequency Two-scales :One scale for
Low frequency

structure, one for fields

homogeneous # of appropriate length scales
background to resolve
important structure features
, in the domain of analysis
10 T v v
b Flain CG
@ o LF-MLFMA
Tl IO . S «  Capacitor approximation [
. .
%m"
:
E L]
J.S. Zhao, W. C. Chew, 10° ,
IEEE Trans. Antennas ' ! !
Propag., Oct. 2000. 0 : i
107" 1w w0 10 10 10*

Frequency (GHz)
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Feature lengths relative to
background wavelength

* Type 2 multiscale problem

2c: High-frequency (?)
2b: Mixed-frequency
2a: Low-frequency

High frequency multiscale
structure

Mixed frequency

Low frequency
homogeneous

# of appropriate length scales

background to resolve

important structure features
in the domain of anaIyS|s

Vplane ™~ (10_2 >\0 )3

1 MHz | -~ 10—4)\0

fueling

F. Vipiana et al., IEEE Trans.
F. P. Andriulli et al., IEEE Trans. Antennas Propag., Aug. 2008. Antennas Propag., July 2010.
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Feature lengths relative to
background wavelength

* Type 2 multiscale problem

2c: High-frequency (?)
2b: Mixed-frequency
2a: Low-frequency

High frequency multiscale
structure

Mixed frequency

Low frequency

homogeneous # of appropriate length scales
background to resolve

important structure features
in the domain of analysis
inner{ secondary phlbém

=
/|
- I*
‘B
| \
/ /
/ /! f %
/ /
/ / B
. /1N h,
/! f,’ % /|
/ iJ ,J | /
/ |
/ |
bark cork cambium

€200 Merrianicijebstetna: M. F. Wu, G. Kaur, A. E. Yilmaz, IEEE Trans.

Type 2b multiscale groblem:
e =12.2, 0=0.002
" / & = 56.7, 0=0.013

earlywood heartwood /

latewood N

grawthring

L i.!l i“l “: :--'

Antennas Propag., May 2010.
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Feature lengths relative to
background wavelength

* Type 2 multiscale problem

2c: High-frequency (?)
2b: Mixed-frequency
2a: Low-frequency

High frequency multiscale
structure

Mixed frequency

Low frequency

homogeneous # of appropriate length scales
background to resolve

important structure features
in the domain of analysis

s
‘ . ' v;sasezl ITO coated
‘II I- ' / glass substrate
P L |

Type 2b multiscale problem:
. N e

Metal

Microwave | Rotor

Reactor |

Jl Rectangular
Cavity

Liquid
Indium Tin Quartz Tpay solution
Oxide (ITO) Vessel i i i . . i
i : . ® 10° i -2 §x10" Bx10'6x10°

Laﬁéocr?;t)mg 10 ll? : 10° 10 lﬂl : 10 —_— !
\ LIqUId j.m“ !'J"' m| IT‘-I\._".JL'.L-: I'!" 'I.T.|:| I'Ir-”l.'ll\.".l""l IA' - )
Glass Solution . .
Substrate B. Reeja-Jayan et al., Sci. Rep., Dec. 2012.
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Feature lengths relative to . :
packground wavelength Typ.e 2 multiscale problem
High frequency multiscale 2c: High-frequency (?)

2b: Mixed-frequency
2a: Low-frequency

structure

Mixed frequency

Low frequency

homogeneous

# of appropriate length scales
background PPIop J

to resolve
important structure features
in the domain of analysis

Type 2b multiscale problem:

f =350MHz 69280401 3312@44:11
2? E(r or
J. W. Massey, E - ‘
V. Subramanian, ‘E(l’,t)‘ or fs,, =18
C. Liu, E - )‘
A. E. Yilmaz, 7,1 (r,t)‘ 55 =
in Proc. EUCAP, g 5 (dB)
E] 928e+01] '| 5H88e+01
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Feature lengths relative to
background wavelengths

High frequency
Mixed frequency

Low frequency

single-scale
structure

# of appropriate length scales
to resolve
important background features
in the domain of analysis

l“*ml!—'ﬂlﬁ{llbw Il—lh?r AY Hklll.
ot &

» Multiscale background

A background medium that
has important features in the
domain of analysis at multiple
length scales
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Feature lengths relative to
background wavelengths

* Type 3 multiscale problem

3c: High-frequency
3a: Low-frequency

High frequency

Mixed frequency

Type 3a multiscale problem:
Low frequency 1

26 kHz
single-scale om \
2 4
structure . —~10°-10
. background

M ~1072 —=107"

4.5m

background
5.5m
M. J. Nam et al.,
7.5m Geophysics,
- Jan.-Feb. 2013.
10° ' | | ' '
107k kb iy wom_} .| ° R123] 0.25 Hz

+ R2[23]

agnitude of E, (V/m)
=
=]

i , K. Yang,
# of appropriate length scales o / X |-—R2AN A E Yamaz
_ to resolve R e ' ! IEEE Geosci.
important background features ‘91&'""" TN Remote Sens.
in the domain of analysis Sy 5 > > . 1o Lett, July 2013,
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Feature lengths relative to
background wavelengths

* Type 3 multiscale problem

3c: High-frequency
3a: Low-frequency

High frequency

Mixed frequency
Type 3¢ multiscale problem:  J.s.zhao, W. C. Chew,
C.-C. Lu, E. Michielssen,

2.2 GHz J. Song, IEEE Trans.
Microw. Theory Tech.,

Apr. 1998.

2
A~ (10)) T 2
30 x 30 patch array LY

Low frequency

single-scale
structure

F. Ling, C. F. Wang,
s J. M. Jin, IEEE Trans.

||

v May 2000.

# of appropriate length scales 11 GHz e

T

to resolve
important background features
in the domain of analysis
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* Not all multi-scale EM problems are the same, some are harder
- Must consider structure, background, rate of change of fields
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Low frequency A 3 3 N\
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- Type 4a74ba4c important structure features
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« \What we haven’t talked about #Ofappmfr‘ate 'length scales
0 resolve
- Multi-time-scale problems e o of e

How much should one model vs. how much can one model?
Which methods are more promising for which types of problems?
How different solution methods can recast the problem to a different type...
- Atype 2c problem for FDTD can become a type 3c problem for MOM
- Atype 2b problem can become many type 1a+1c problems using equivalence principle
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