next up previous
Next: 2-D Hexagonal Sampling Up: EE381K Multidimensional Digital Signal Previous: 1-D Case

2-D Rectangular Case


\begin{displaymath}x(n_1, n_2)=x_a(n_1T_1, n_2T_2)\end{displaymath}



\begin{displaymath}
\underline{V}=\left[\begin{array}{cc}T_1&0 0&T_2\end{array...
...c}\frac{2\pi}{T_1}&0 0&{\frac{2\pi}{T_2}}
\end{array}\right]
\end{displaymath}



\begin{displaymath}
X(\underline{\omega})=\frac{1}{\vert \det{\underline{V}} \ve...
...a({\underline{V}}^{-t}
(\underline{\omega}-2\pi\underline{k}))
\end{displaymath}



\begin{displaymath}
=\frac{1}{T_1T_2}\sum_{k_1}\sum_{k_2}X_a
(\left[\begin{array...
...ght]-2\pi\left[\begin{array}{c}k_1 \\
k_2\end{array}\right]})
\end{displaymath}



\begin{displaymath}
=\frac{1}{T_1T_2}
\sum_{k_1}\sum_{k_2}X_a
(\frac{\omega_1}{T...
...rac{2\pi k_1}{T_1},
\frac{\omega_2}{T_2}-\frac{2\pi k_2}{T_2})
\end{displaymath}


Sampling Density = \(
\frac{1}{\vert \det{\underline{V}} \vert}
\) = \(
\frac{1}{{T_1}{T_2}}
\) samples/\(m^2\)



Brian L. Evans