next up previous
Next: The Nyquist Density Up: EE381K Multidimensional Digital Signal Previous: 2-D Rectangular Case

2-D Hexagonal Sampling




\begin{picture}(120,50)
\multiput(24,33)(8,0){8}{\circle{8}}
\multiput(20,25)(8,...
...1,-2){4}}
\put(90, 25){\( \Omega_1 \)}
\put(44,45){\( \Omega_2 \)}
\end{picture}

\begin{displaymath}
\underline{U_1}=\left[\begin{array}{c}W \\
\sqrt{3}W\end{ar...
...e{U_2}=\left[\begin{array}{c}W\\
-\sqrt{3}W\end{array}\right]
\end{displaymath}



\begin{displaymath}
\underline{U}=\left[\begin{array}{cc}W&W\\
\sqrt{3}W&-\sqrt...
...frac{\pi}{\sqrt{3}W}&\frac{\pi}{-\sqrt{3}W}
\end{array}\right]
\end{displaymath}



Sampling Density = \(\frac{w^2\sqrt{3}}{2{\pi}^2} \)



Brian L. Evans